无机材料学报 ›› 2025, Vol. 40 ›› Issue (11): 1293-1299.DOI: 10.15541/jim20240487
任先培1(
), 李超1, 凌芳1, 胡启威1, 于俊玲1, 向晖1(
), 彭跃红2(
)
收稿日期:2024-11-18
修回日期:2025-02-18
出版日期:2025-03-19
网络出版日期:2025-03-19
通讯作者:
向 晖, 副教授. E-mail: hxiang0717@163.com;作者简介:任先培(1982-), 男, 副教授. E-mail: renxianpei@163.com
REN Xianpei1(
), LI Chao1, LING Fang1, HU Qiwei1, YU Junling1, XIANG Hui1(
), PENG Yuehong2(
)
Received:2024-11-18
Revised:2025-02-18
Published:2025-03-19
Online:2025-03-19
Contact:
XIANG Hui, associate professor. E-mail: hxiang0717@163.com;About author:REN Xianpei (1982-), male, associate professor. E-mail: renxianpei@163.com
Supported by:摘要:
过渡金属二硫属化物(TMDs)在电催化分解水制氢方面具有较好的应用前景, 引起了人们的广泛关注, 然而, 它们的电催化制氢性能与金属铂还有较大差距。构建异质结合金被认为是提高析氢活性的有效方法。本研究采用简单的溶胶-凝胶工艺在炭黑(CB)颗粒表面合成了一种新型的四元CoMoSSe复合材料(CoMoSSe@CB)。与CoSe@CB以及MoS2@CB相比, CoMoSSe@CB表现出更加优异的析氢活性, 在-10 mA·cm-2阴极电流密度下的过电位仅为190 mV, Tafel斜率为62 mV·dec-1。这主要归因于复合材料的异质结构以及Co、Mo、S和Se原子之间的合金效应, 调节了电子结构和氢原子吸附的自由能, 从而增加了催化剂的活性位点数量、增强了催化剂电荷转移能力。这项工作可为设计新型高效TMDs电催化剂提供指导。
中图分类号:
任先培, 李超, 凌芳, 胡启威, 于俊玲, 向晖, 彭跃红. 炭黑表面CoMoSSe异质结构合金的制备及其高效析氢研究[J]. 无机材料学报, 2025, 40(11): 1293-1299.
REN Xianpei, LI Chao, LING Fang, HU Qiwei, YU Junling, XIANG Hui, PENG Yuehong. CoMoSSe Alloy with Heterostructure on Carbon Black for Enhanced Electrocatalytic H2 Evolution[J]. Journal of Inorganic Materials, 2025, 40(11): 1293-1299.
Fig. 5 HER performances of different catalysts (a) LSV curves and (b) corresponding Tafel plots obtained from CoSe@CB, MoS2@CB, CoMoSSe@CB, and Pt/C catalysts in 0.5 mol·L-1 H2SO4 at a scan rate of 5 mV·s-1; (c) EIS spectra at 0.4 V (vs. RHE) for CoSe@CB, MoS2@CB and CoMoSSe@CB electrodes with inset showing equivalent circuit; (d) Cdl of the electrocatalysts obtained by CV in non-Faradic potential window
| [1] |
XU B, LIANG J, SUN X P, et al. Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance. Green Chemistry, 2023, 25: 3767.
DOI URL |
| [2] |
ZHANG W, GUO R, YUE Q, et al. High-entropy phosphide bifunctional catalyst: preparation and performance of efficient water splitting. Journal of Inorganic Materials, 2024, 39(11): 1265.
DOI URL |
| [3] |
REN P Y, WANG R, TENG Z H, et al. Effect and mechanism of hydrogen annealing temperature on the HER performance of RuO2-based catalysts in acid media. International Journal of Hydrogen Energy, 2024, 72: 1049.
DOI URL |
| [4] | ZHANG X Y, LIU T Y, GUO T, et al. High-performance MoC electrocatalyst for hydrogen evolution reaction enabled by surface sulfur substitution. ACS Applied Materials & Interfaces, 2021, 13(34): 40705. |
| [5] |
XIONG W, YIN H H, WU T X, et al. Challenges and opportunities of transition metal oxides as electrocatalysts. Chemistry-A European Journal, 2023, 29 (5): e202202872.
DOI URL |
| [6] | YAN X S, DENG D J, WU S Q, et al. Development of transition metal nitrides as oxygen and hydrogen electrocatalysts. Chinese Journal of Structural Chemistry, 2022, 41: 2207004. |
| [7] |
WANG Q W, HE R Z, YANG F L, et al. An overview of heteroatom doped cobalt phosphide for efficient electrochemical water splitting, Chemical Engineering Journal, 2023, 456: 141056.
DOI URL |
| [8] |
GE Z Q, LI J W, ZHANG H J, et al. p-d orbitals coupling heterosites of Ni2P/NiFe-LDH interface enable O-H cleavage for water splitting. Advanced Functional Materials, 2024, 34(40): 2411024.
DOI URL |
| [9] |
FENG Y, CHEN L, YUAN Z Y. Recent advances in transition metal layered double hydroxide basedmaterials as efficient electrocatalysts. Journal of Industrial and Engineering Chemistry, 2023, 120: 27.
DOI URL |
| [10] |
LI R Z, LIANG J, LI T S, et al. Recent advances in MoS2-based materials for electrocatalysis. Chemical Communications, 2022, 58: 2259.
DOI URL |
| [11] |
REN X P, HU Q W, LING F, et al. Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes towards superior hydrogen evolution. New Carbon Materials, 2023, 38(6): 1059.
DOI URL |
| [12] |
XUE Y Q, XU Y Y, YAN Q, et al. Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 617: 594.
DOI URL |
| [13] | LIU F, WANG F Q, SUN X Y, et al. Plasma-induced vacancies in CoS2 electrocatalysts to activate sulfur sites for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 48: 941. |
| [14] |
ZHANG Y T, LI B B, ZHOU A H, et al. Fe-Ni-doped metal- organic framework derived CoSe2 as an efficient and stable electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 65: 186.
DOI URL |
| [15] |
HUA W, SUN H H, XU F, et al. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020, 39: 335.
DOI |
| [16] |
ZHANG L L, LEI Y T, ZHOU D N, et al. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Research, 2022, 15(4): 2895.
DOI |
| [17] |
GONG Q F, CHENG L, LIU C H, et al. Ultrathin MoS2(1-x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catalysis, 2015, 5: 2213.
DOI URL |
| [18] |
KIRAN V, MUKHERJEE D, JENJETI R, et al. Active guests in the MoS2/MoSe2 host lattice: efficient hydrogen evolution using few-layer alloys of MoS2(1-x)Se2x. Nanoscale, 2014, 6: 12856.
DOI URL |
| [19] |
WANG H, OUYANG L Y, ZOU G F, et al. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. ACS Catalysis, 2018, 8: 9529.
DOI URL |
| [20] |
ZHAO G Q, RUI K, DOU S X, et al. Heterostructures for electrochemical hydrogen evolution reaction: a review. Advanced Functional Materials, 2018, 28(43): 1803291.
DOI URL |
| [21] |
SONG A L, SONG S L, DUANMU M, et al. Recent progress of non-noble metallic heterostructures for the electrocatalytic hydrogen evolution. Small Science, 2023, 3(9): 2300036.
DOI URL |
| [22] |
SUN Z M, LIN L, YUAN M W, et al. Mott-Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity. Nano Energy, 2022, 101: 107563.
DOI URL |
| [23] |
WU M H, HUANG Y Y, CHENG X L, et al. Arrays of ZnSe/MoSe2 nanotubes with electronic modulation as efficient electrocatalysts for hydrogen evolution reaction. Advanced Materials Interfaces, 2017, 4(23): 1700948.
DOI URL |
| [24] |
REN X P, LI Q, LING F, et al. Construction of MoO2/MoS2 heterojunction on carbon nanotubes as high-efficiency electrocatalysts for H2 production. CrystEngComm, 2023, 25: 5238.
DOI URL |
| [25] |
WANG P C, WAN L, LIN Y Q, et al. MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44(31): 16566.
DOI URL |
| [26] |
LI S, ZANG W, LIU X, et al. Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance. Chemical Engineering Journal, 2019, 359: 1419.
DOI URL |
| [27] |
HU Z X, JIANG L J, LI R C, et al. Interface engineering of MoS2-CoS2 heteronanosheets for enhanced electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 71: 701.
DOI URL |
| [28] |
LI Y J, WANG W Y, HUANG B J, et al. Abundant heterointerfaces in MOF-derived hollow CoS2-MoS2 nanosheet array electrocatalysts for overall water splitting. Journal of Energy Chemistry, 2021, 57: 99.
DOI URL |
| [29] |
LIANG J, YANG Y C, ZHANG J, et al. Ultrasmall CoSe2 nanoparticles grown on MoS2 nanofilms: a new catalyst for hydrogen evolution reaction. Physica Status Solidi (RRL), 2023, 18(7): 2300169.
DOI URL |
| [30] | LIU Z L, WANG T, CHANG P, et al. MOF-derived MoS2@o-CoSe2 hetero-catalysts accompanied by structural phase transition for efficient electrochemical hydrogen production. International Journal of Hydrogen Energy, 2024, 51: 119. |
| [31] |
TANG X L, ZHANG J Y, MEI B B, et al. Synthesis of hollow CoSe2/MoSe2 nanospheres for efficient hydrazineassisted hydrogen evolution. Chemical Engineering Journal, 2021, 404: 126529.
DOI URL |
| [32] |
LI R, ZHOU X, SHEN H, et al. Conductive holey MoO2-Mo3N2 hetero-junctions as job-synergistic cathode host with low surface area for high-loading Li-S batteries. ACS Nano, 2019, 13(9): 10049.
DOI URL |
| [33] | LIU M, ZHANG C, SU J, et al. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium- sulfur batteries. ACS Applied Materials & Interfaces, 2019, 11: 20788. |
| [34] |
GE H C, WANG J Q, LUO Y C, et al. Enhancing heterojunction interface charge transport efficiency in NiCo-LDHs@Co/CoO-CNFs for high-performance asymmetric and zinc-ion hybrid supercapacitors. Carbon, 2024, 229: 119482.
DOI URL |
| [35] |
HOU M, QIU Y, YAN G, et al. Aging mechanism of MoS2 nanosheets confined in N-doped mesoporous carbon spheres for sodium-ion batteries. Nano Energy, 2019, 62: 299.
DOI URL |
| [36] |
YANG L, FU Q, WANG W H, et al. Large-area synthesis of monolayered MoS2(1-x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale, 2015, 7: 10490.
DOI URL |
| [37] |
LI Y, WANG H, XIE L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133: 7296.
DOI URL |
| [1] | 吴华鑫, 张骐昊, YAN Haixue, 王连军, 江莞. 纳米复合MgAgSb基合金的热电输运性能优化[J]. 无机材料学报, 2025, 40(9): 997-1004. |
| [2] | 信震宇, 郭瑞华, 乌仁托亚, 王艳, 安胜利, 张国芳, 关丽丽. Pt-Fe/GO纳米催化剂的制备及其电催化乙醇氧化性能研究[J]. 无机材料学报, 2025, 40(4): 379-387. |
| [3] | 陈梓, 张爱迪, 龚克, 刘海华, 禹钢, 单青松, 刘勇, 曾海波. 具有可调谐和长寿命荧光发射的高亮度、单分散四元CuInZnS@ZnS量子点[J]. 无机材料学报, 2025, 40(4): 433-339. |
| [4] | 景欣欣, 陈必清, 翟佳鑫, 袁美玲. Ni-Co-B-RE(Sm、Dy、Tb)复合电极: 化学沉积法制备及电催化析氢性能研究[J]. 无机材料学报, 2024, 39(5): 467-476. |
| [5] | 陈浩, 樊文浩, 安德成, 陈少平. 能带优化和载流子调控改善SnTe的热电性能[J]. 无机材料学报, 2024, 39(3): 306-312. |
| [6] | 孟雨婷, 王雪梅, 章淑娴, 陈志炜, 裴艳中. Bi2Te3基热电材料的单带和双带传输特性转变[J]. 无机材料学报, 2024, 39(11): 1283-1291. |
| [7] | 孙强强, 陈子璇, 杨子玥, 王毅梦, 曹宝月. 金属镍铜负载钒氧化物的高效电解产氢性能[J]. 无机材料学报, 2023, 38(6): 647-655. |
| [8] | 张祥松, 刘业通, 王永瑛, 武子瑞, 刘振中, 李毅, 杨娟. 自组装制备PtIr合金气凝胶及其高效电催化氨氧化性能[J]. 无机材料学报, 2023, 38(5): 511-520. |
| [9] | 鲁志强, 刘可可, 李强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. p型多晶Bi0.5Sb1.5Te3合金类施主效应与热电性能[J]. 无机材料学报, 2023, 38(11): 1331-1337. |
| [10] | 潘洋洋, 梁波, 洪督, 祁志祥, 牛亚然, 郑学斌. TiAl合金表面TiAlCrY/YSZ涂层高温长时间服役性能[J]. 无机材料学报, 2023, 38(1): 105-112. |
| [11] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
| [12] | 陈俊云, 孙磊, 靳田野, 罗坤, 赵智胜, 田永君. 无黏结剂层状BN增韧cBN刀具材料的研究[J]. 无机材料学报, 2022, 37(6): 623-628. |
| [13] | 王洪达, 冯倩, 游潇, 周海军, 胡建宝, 阚艳梅, 陈小武, 董绍明. SiC/SiC-哈氏合金异质连接机制及其氟熔盐腐蚀特性分析[J]. 无机材料学报, 2022, 37(4): 452-458. |
| [14] | 吴凌, 谭继, 钱仕, 葛乃建, 刘宣勇. 钽离子注入对镍钛合金表面生物学性能的影响[J]. 无机材料学报, 2022, 37(11): 1217-1224. |
| [15] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||