无机材料学报 ›› 2025, Vol. 40 ›› Issue (11): 1285-1292.DOI: 10.15541/jim20250098
许晓宇1(
), 周黎阳2, 冯晓颖1, 王挥2, 阎彬2, 许杰1, 高峰1(
)
收稿日期:2025-03-08
修回日期:2025-04-13
出版日期:2025-11-20
网络出版日期:2025-06-10
通讯作者:
高 峰, 教授. E-mail: gaofeng@nwpu.edu.cn作者简介:许晓宇(1998-), 男, 博士研究生. E-mail: x2584186142@126.com
基金资助:
XU Xiaoyu1(
), ZHOU Liyang2, FENG Xiaoying1, WANG Hui2, YAN Bin2, XU Jie1, GAO Feng1(
)
Received:2025-03-08
Revised:2025-04-13
Published:2025-11-20
Online:2025-06-10
Contact:
GAO Feng, professor. E-mail: gaofeng@nwpu.edu.cnAbout author:XU Xiaoyu (1998-), male, PhD candidate. E-mail: x2584186142@126.com
Supported by:摘要:
高性能压电陶瓷在现代机电系统中具有不可替代的重要作用, Pb(In1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbZrO3- PbTiO3(PIN-PZN-PZ-PT)这类多组分材料因其在准同型相界(MPB)处所呈现出的独特性能而备受关注。本工作通过精细调控PbTiO3(PT)的含量, 设计并优化PIN-PZN-PZ-PT陶瓷的MPB组分, 以实现压电性能与热稳定性的双重提升。采用传统固相反应法制备陶瓷, 依据线性组合规则预测各组分对MPB位置的贡献, 通过X射线衍射(XRD)对晶相结构进行验证, 并开展全面的电学性能测试, 主要测定压电常数(d33)和居里温度(TC)。实验结果表明, MPB位置明显受PT含量的影响: 随着PT比例的增加, 陶瓷中三方相逐步减少, 而四方相逐渐占据主导地位, 导致晶相平衡发生明显转变。具体而言, 不同体系中最优MPB组分范围分别为: (1-x)(0.3PIN-0.6PZN-0.1PZ)-xPT中x=0.245~ 0.265; (1-x)(0.3PIN-0.5PZN-0.2PZ)-xPT中x=0.290~0.330; 以及(1-x)(0.3PIN-0.4PZN-0.3PZ)-xPT中x=0.305~0.345。其中, 0.735(0.3PIN-0.6PZN-0.1PZ)-0.265PT样品表现最佳, 其d33达到425 pC/N, TC高达253 ℃。这些结果表明, 通过精确调控PT含量, 可以有效控制MPB处的晶相平衡, 从而显著提升压电性能。综上所述, 本研究成功确定了PIN-PZN-PZ-PT陶瓷的最优MPB组分, 充分展示了其在高性能压电应用中的巨大潜力, 并为后续工艺改进和材料长期稳定性研究提供了坚实基础。
中图分类号:
许晓宇, 周黎阳, 冯晓颖, 王挥, 阎彬, 许杰, 高峰. 基于MPB线性规则设计的PIN-PZN-PZ-PT压电陶瓷结构与性能研究[J]. 无机材料学报, 2025, 40(11): 1285-1292.
XU Xiaoyu, ZHOU Liyang, FENG Xiaoying, WANG Hui, YAN Bin, XU Jie, GAO Feng. Microstructure and Properties of PIN-PZN-PZ-PT Piezoelectric Ceramics Designed by MPB Linear Rules[J]. Journal of Inorganic Materials, 2025, 40(11): 1285-1292.
| Sample | s1 | s2 | s3 | x | Sample’s label |
|---|---|---|---|---|---|
| A | 0.3 | 0.6 | 0.1 | 0.205-0.285 | A205-A285 |
| B | 0.3 | 0.5 | 0.2 | 0.290-0.370 | B290-B370 |
| C | 0.3 | 0.4 | 0.3 | 0.285-0.365 | C285-C365 |
表1 PIN-PZN-PZ-PT压电陶瓷的组分设计
Table 1 Composition design of PIN-PZN-PZ-PT piezoelectric ceramics
| Sample | s1 | s2 | s3 | x | Sample’s label |
|---|---|---|---|---|---|
| A | 0.3 | 0.6 | 0.1 | 0.205-0.285 | A205-A285 |
| B | 0.3 | 0.5 | 0.2 | 0.290-0.370 | B290-B370 |
| C | 0.3 | 0.4 | 0.3 | 0.285-0.365 | C285-C365 |
图3 PIZZT陶瓷在2θ=43.5°~46.2°的XRD峰位拟合图谱
Fig. 3 XRD peak fitting patterns of PIZZT ceramics at 2θ=43.5°-46.2° (a) A205-A285; (b) B290-B370; (c) C285-C365. Colorful figures are available on website
图4 PIZZT陶瓷随PT含量变化的介电性能
Fig. 4 Dielectric properties of PIZZT ceramics as a function of PT content (a) Dielectric constant; (b) Dielectric loss tangent
图5 PIZZT陶瓷的介电温谱和居里温度
Fig. 5 Temperature dependent on dielectric properties and Curie temperature of PIZZT ceramics (a) A205-A285; (b) B290-B370; (c) C285-C365; (d) Curie temperatures of A, B and C. Colorful figures are available on website
| Sample | εr | TC/ ℃ | Pr/ (μC·cm-2) | Ec/ (kV·cm-1) | d33/ (pC·N-1) | kp |
|---|---|---|---|---|---|---|
| A205 | 1346 | 227 | 34.7 | 9.1 | 168 | 0.33 |
| A225 | 1588 | 232 | 35.1 | 9.7 | 303 | 0.36 |
| A245 | 2686 | 241 | 36.2 | 10.4 | 360 | 0.44 |
| A265 | 3146 | 253 | 34.1 | 12.2 | 425 | 0.50 |
| A285 | 2337 | 268 | 27.1 | 14.7 | 367 | 0.42 |
| B290 | 2118 | 273 | 33.1 | 11.7 | 360 | 0.46 |
| B310 | 2365 | 284 | 29.5 | 15.2 | 334 | 0.39 |
| B330 | 2311 | 279 | 28.4 | 16.4 | 295 | 0.33 |
| B350 | 1903 | 304 | 25.2 | 18.2 | 260 | 0.34 |
| B370 | 1400 | 308 | 19.4 | 19.1 | 243 | 0.29 |
| C285 | 1198 | 284 | 37.11 | 10.0 | 255 | 0.34 |
| C305 | 1758 | 299 | 37.14 | 10.1 | 270 | 0.38 |
| C325 | 1312 | 302 | 31.8 | 17.4 | 260 | 0.36 |
| C345 | 1281 | 303 | 26.59 | 19.9 | 255 | 0.33 |
| C365 | 1179 | 317 | 21.36 | 15.14 | 230 | 0.29 |
表2 PIZZT陶瓷的压电性能
Table 2 Piezoelectric properties of PIZZT ceramics
| Sample | εr | TC/ ℃ | Pr/ (μC·cm-2) | Ec/ (kV·cm-1) | d33/ (pC·N-1) | kp |
|---|---|---|---|---|---|---|
| A205 | 1346 | 227 | 34.7 | 9.1 | 168 | 0.33 |
| A225 | 1588 | 232 | 35.1 | 9.7 | 303 | 0.36 |
| A245 | 2686 | 241 | 36.2 | 10.4 | 360 | 0.44 |
| A265 | 3146 | 253 | 34.1 | 12.2 | 425 | 0.50 |
| A285 | 2337 | 268 | 27.1 | 14.7 | 367 | 0.42 |
| B290 | 2118 | 273 | 33.1 | 11.7 | 360 | 0.46 |
| B310 | 2365 | 284 | 29.5 | 15.2 | 334 | 0.39 |
| B330 | 2311 | 279 | 28.4 | 16.4 | 295 | 0.33 |
| B350 | 1903 | 304 | 25.2 | 18.2 | 260 | 0.34 |
| B370 | 1400 | 308 | 19.4 | 19.1 | 243 | 0.29 |
| C285 | 1198 | 284 | 37.11 | 10.0 | 255 | 0.34 |
| C305 | 1758 | 299 | 37.14 | 10.1 | 270 | 0.38 |
| C325 | 1312 | 302 | 31.8 | 17.4 | 260 | 0.36 |
| C345 | 1281 | 303 | 26.59 | 19.9 | 255 | 0.33 |
| C365 | 1179 | 317 | 21.36 | 15.14 | 230 | 0.29 |
| Designation | TC/℃ | d33/(pC·N-1) | kp | εr | Ref. |
|---|---|---|---|---|---|
| PMN-PT | 159 | 663 | - | 5260 | [ |
| PMN-PIN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PNN-PZ-PT | 115 | 986 | 0.693 | 9015 | [ |
| PNN-PH-PT | 110 | 970 | 0.65 | 6000 | [ |
| Sr-PMN-PT | 210 | 630 | 0.52 | 4000 | [ |
| Sm-PMN-PT | 89 | 1510 | - | 13000 | [ |
| PIN-PMN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PZW-PMN-PZT | 150 | 450 | - | 3811 | [ |
| PZT-5A | 360 | 390 | 0.5 | 1750 | [ |
| PZT-5H | 193 | 590 | 0.64 | 3300 | [ |
| PMN-PZ-PT | 230 | 661 | 0.63 | 2441 | [ |
| PIN-PMN-PT | 219 | 505 | 0.62 | 2120 | [ |
| PIN-PSN-PT | 280 | 360 | - | - | [ |
| PIZZT | 253 | 425 | 0.50 | 3146 | This work |
表3 铅基压电陶瓷性能比较
Table 3 Comparison of lead-based piezoelectric ceramic properties
| Designation | TC/℃ | d33/(pC·N-1) | kp | εr | Ref. |
|---|---|---|---|---|---|
| PMN-PT | 159 | 663 | - | 5260 | [ |
| PMN-PIN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PNN-PZ-PT | 115 | 986 | 0.693 | 9015 | [ |
| PNN-PH-PT | 110 | 970 | 0.65 | 6000 | [ |
| Sr-PMN-PT | 210 | 630 | 0.52 | 4000 | [ |
| Sm-PMN-PT | 89 | 1510 | - | 13000 | [ |
| PIN-PMN-PT | 245 | 450 | 0.49 | 2970 | [ |
| PZW-PMN-PZT | 150 | 450 | - | 3811 | [ |
| PZT-5A | 360 | 390 | 0.5 | 1750 | [ |
| PZT-5H | 193 | 590 | 0.64 | 3300 | [ |
| PMN-PZ-PT | 230 | 661 | 0.63 | 2441 | [ |
| PIN-PMN-PT | 219 | 505 | 0.62 | 2120 | [ |
| PIN-PSN-PT | 280 | 360 | - | - | [ |
| PIZZT | 253 | 425 | 0.50 | 3146 | This work |
| Sample classification | Sample | T/% | R/% | Sample classification | Sample | T/% | R/% |
|---|---|---|---|---|---|---|---|
| A | A205 | 0 | 100 | C | C285 | 32 | 68 |
| A225 | 33 | 67 | C305 | 42 | 58 | ||
| A245 | 48 | 52 | C325 | 53 | 47 | ||
| A265 | 67 | 33 | C345 | 57 | 43 | ||
| A285 | 81 | 19 | C365 | 86 | 14 | ||
| B | B290 | 53 | 47 | ||||
| B310 | 54 | 46 | |||||
| B330 | 56 | 44 | |||||
| B350 | 66 | 34 | |||||
| B370 | 83 | 17 |
表S1 A、B、C三组中各样品三方相和四方相的相对含量
Table S1 Rhombohedral and tetragonal phase content of A, B and C
| Sample classification | Sample | T/% | R/% | Sample classification | Sample | T/% | R/% |
|---|---|---|---|---|---|---|---|
| A | A205 | 0 | 100 | C | C285 | 32 | 68 |
| A225 | 33 | 67 | C305 | 42 | 58 | ||
| A245 | 48 | 52 | C325 | 53 | 47 | ||
| A265 | 67 | 33 | C345 | 57 | 43 | ||
| A285 | 81 | 19 | C365 | 86 | 14 | ||
| B | B290 | 53 | 47 | ||||
| B310 | 54 | 46 | |||||
| B330 | 56 | 44 | |||||
| B350 | 66 | 34 | |||||
| B370 | 83 | 17 |
| [1] | EITEL R E, RANDALL C A, SHROUT T R, et al. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Journal of Applied Physics, 2001, 40(10): 5999. |
| [2] |
ZHANG S J, LEE S M, KIM D H, et al. Electromechanical properties of PMN-PZT piezoelectric single crystals near morphotropic phase boundary compositions. Journal of the American Ceramic Society, 2007, 90(12): 3859.
DOI URL |
| [3] |
LI F, ZHANG S J, YANG T N. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nature Communications, 2016, 7: 13807.
DOI PMID |
| [4] |
YAMAMOTO N, YAMASHITA Y, HOSONO Y, et al. Electrical and physical properties of repoled PMN-PT single crystal sliver transducer. Sensors and Actuators A: Physical, 2013, 200(1): 16.
DOI URL |
| [5] |
WANG D, CAO M, ZHANG S J, et al. Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics. Journal of the European Ceramic Society, 2012, 32(2): 433.
DOI URL |
| [6] |
WU J, CHANG Y F, YANG B, et al. Densification behavior and electrical properties of CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3- PbTiO3 ternary ceramics. Ceramics International, 2016, 42(6): 7223.
DOI URL |
| [7] |
ZHAO L Y, HOU Y D, CHANG L M, et al. Microstructure and electrical properties of 0.5PZN-0.5PZT relaxor ferroelectrics close to the morphotropic phase boundary. Journal of Materials Research, 2011, 24(6): 2029.
DOI URL |
| [8] |
RAMESSH G, RAMACHANDRA M S, SIVASUBRAMANIAN V, et al. Electrocaloric effect in (1-x)PIN-xPT relaxor ferroelectrics. Journal of Alloys Compounds, 2016, 663: 444.
DOI URL |
| [9] |
QI X D, SUN E W, WANG J J, et al. Electromechanical properties of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics. Ceramics International, 2016, 42(14): 15332.
DOI URL |
| [10] | LUO N, ZHANG S J, QIANG L, et al. New Pb(Mg1/3Nb2/3)O3- Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 quaternary ceramics: morphotropic phase boundary design and electrical properties. ACS Applied Materials & Interfaces, 2016, 8(24): 15506. |
| [11] |
LI C C, XU B, LIN D B. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics. Physical Review B, 2020, 101(14): 140102.
DOI URL |
| [12] |
FENG X Y, LIU J T, GAO F, et al. Effect of sintering atmosphere on the microstructure and electrical properties of Pb(Zr1/2Ti1/2)O3- Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33: 11613.
DOI |
| [13] |
FENG X Y, LI L L, XU X Y, et al. Microstructure evolution and properties of textured, Pb(Zr1/2Ti1/2)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics with plate-like BaZr0.1Ti0.9O3 template. Journal of Alloys and Compounds, 2024, 1002: 175439.
DOI URL |
| [14] |
LI F, ZHANG S J, XU Z. Piezoelectricity-an important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703.
DOI URL |
| [15] |
XU X Y, FENG X Y, GAO F, et al. Phase structure and electrical properties of 0.28PIN-0.32PZN-(0.4-x)PT-xPZ piezoelectric ceramics. Crystals, 2023, 13(9): 1362.
DOI URL |
| [16] |
LIM J B, ZHANG S J, SHROUT T R. Modified Pb(Yb,Nb)O3- PbZrO3-PbTiO3 ternary system for high temperature applications. Ceramics International, 2012, 38(1): 277.
DOI URL |
| [17] |
YOO J Y, LEE S H, LEE K S. Piezoelectric and dielectric properties of low temperature sintering Pb(Zn1/2W1/2)O3- Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics. Transactions on Electrical and Electronic Materials, 2008, 9(3): 91.
DOI URL |
| [18] |
GUO Q H, LI F, XIA F Q, et al. Piezoelectric ceramics with high piezoelectricity and broad temperature usage range. Journal of Materiomics, 2021, 7: 683.
DOI URL |
| [19] |
WANG P B, GUO Q H, LI F, et al. Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3ternary ceramics with temperature-insensitive and superior piezoelectric property. Journal of European Ceramic Society, 2022, 42: 3848.
DOI URL |
| [20] |
WEI D D, HUANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. Journal of the American Ceramic Society, 2017, 100(3): 1073.
DOI URL |
| [21] |
LIN D, ZHANG S J, GORZKOWSKI E, et al. Investigation of morphotropic phase boundaries in PIN-PSN-PT relaxor ferroelectric ternary systems with high Tr-t and Tc phase transition temperatures. Journal of the European Ceramic Society, 2017, 37(8): 2813.
DOI URL |
| [1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
| [2] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
| [3] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
| [4] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
| [5] | 渠吉发, 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶. 掺杂改性NaYTiO4增强固体氧化物燃料电池阳极抗硫中毒性能[J]. 无机材料学报, 2025, 40(5): 489-496. |
| [6] | 胡清豪, 刘兴翀, 彭永珊, 侯孟君, 何堂贵, 汤安民. 安赛蜜修饰SnO2电子传输层对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2025, 40(11): 1261-1267. |
| [7] | 吕昕怿, 相恒阳, 曾海波. 长程有序助力钙钛矿QLED高性能化[J]. 无机材料学报, 2025, 40(1): 111-112. |
| [8] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
| [9] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
| [10] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
| [11] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
| [12] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
| [13] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
| [14] | 刘锁兰, 栾福园, 吴子华, 寿春晖, 谢华清, 杨松旺. 原位生长钙钛矿太阳能电池共形氧化锡薄膜[J]. 无机材料学报, 2024, 39(12): 1397-1403. |
| [15] | 王煜, 熊浩, 黄孝坤, 江琳沁, 吴波, 黎健生, 杨爱军. 低剂量异辛酸亚锡调控两步法制备Sn-Pb混合钙钛矿太阳能电池[J]. 无机材料学报, 2024, 39(12): 1339-1347. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||