无机材料学报 ›› 2025, Vol. 40 ›› Issue (3): 225-244.DOI: 10.15541/jim20240401 CSTR: 32189.14.10.15541/jim20240401
• 综述 • 下一篇
谌广昌1(), 段小明2, 朱金荣1, 龚情1, 蔡德龙3, 李宇航4, 杨东雷1, 陈彪1, 李新民1, 邓旭东1, 余瑾1, 刘博雅1, 何培刚2, 贾德昌2(
), 周玉2,5
收稿日期:
2024-09-05
修回日期:
2024-11-14
出版日期:
2025-03-20
网络出版日期:
2025-03-12
通讯作者:
贾德昌, 教授. E-mail:dcjia@hit.edu.cn作者简介:
谌广昌(1983-), 男, 博士, 研究员. E-mail:chengc004@avic.com
CHEN Guangchang1(), DUAN Xiaoming2, ZHU Jinrong1, GONG Qing1, CAI Delong3, LI Yuhang4, YANG Donglei1, CHEN Biao1, LI Xinmin1, DENG Xudong1, YU Jin1, LIU Boya1, HE Peigang2, JIA Dechang2(
), ZHOU Yu2,5
Received:
2024-09-05
Revised:
2024-11-14
Published:
2025-03-20
Online:
2025-03-12
Contact:
JIA Dechang, professor. E-mail: dcjia@hit.edu.cnAbout author:
CHEN Guangchang (1983-), male, PhD, professor. E-mail: chengc004@avic.com
摘要:
为进一步拓展先进陶瓷材料在直升机结构领域的应用, 本文对国内外直升机结构用先进陶瓷材料进行了审视和回顾, 重点关注直升机能量冲击防护部位、能量转换部件及腐蚀防护区域等特定结构部位用各类先进陶瓷材料, 对比分析国内外先进陶瓷材料在直升机上述特定结构部位的应用差距, 并提出未来发展建议。高速动态冲击能量防护部位应发展反应烧结曲面一体化成型的非透明装甲陶瓷材料和多晶透明装甲陶瓷材料, 低能量冲击防护部位应发展与环氧树脂基基材兼容的金属陶瓷复合涂层, 热能冲击防护部位应发展陶瓷基/树脂基混杂复合材料(Hybrid Ceramic Matrix Composite/Polymer Matrix Composite, HCMC-PMC), 机械能与电能转换部件应发展以高性能微型压电陶瓷薄膜功能器件及柔性混合电子结构复合材料为代表的多功能复合材料, 电磁能与热能转换部件应发展与环氧树脂基复合材料兼容的纤维增强吸波陶瓷基复合材料, 腐蚀防护区域应发展高性能耐磨腐蚀防护用溶胶-凝胶涂层。同时, 应大力构建直升机装备高速动态能量冲击防护机理及防护材料抗弹击性能优化机制, 并发展垂直起降飞行器多功能复合材料数字试验验证技术, 以显著缩短先进陶瓷材料的研发及装机应用周期并降低验证成本。
中图分类号:
谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244.
CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect[J]. Journal of Inorganic Materials, 2025, 40(3): 225-244.
Brand | Type | Supplier |
---|---|---|
Reaction sintering ceramic | Bullet-proof ceramic | M Cubed Technologies |
AlON | Transparent bullet-proof ceramic | Surmet |
Flexible hybrid system | Silicon-based ceramic | American Semiconductor |
Gentoo | Sol-Gel coating | Luna Innovations |
表1 先进陶瓷材料牌号和研制生产商[40⇓⇓-43]
Table 1 Brands and suppliers of advanced ceramics[40⇓⇓-43]
Brand | Type | Supplier |
---|---|---|
Reaction sintering ceramic | Bullet-proof ceramic | M Cubed Technologies |
AlON | Transparent bullet-proof ceramic | Surmet |
Flexible hybrid system | Silicon-based ceramic | American Semiconductor |
Gentoo | Sol-Gel coating | Luna Innovations |
Material | AlON | MgAl2O3 | Bullet-proof glass |
---|---|---|---|
Density/(g·cm-3) | 3.69 | 3.58 | 2.50 |
Young modulus/GPa | 334 | 238 | 72 |
Bending strength/MPa | 220-550 | 180-450 | 50-55 |
Knoop hardness/GPa | 14-18 | 12-15 | 5.0-5.5 |
表2 典型透明防弹材料性能对比[52⇓⇓-55]
Table 2 Performance comparison for typical transparent bullet-proof ceramics[52⇓⇓-55]
Material | AlON | MgAl2O3 | Bullet-proof glass |
---|---|---|---|
Density/(g·cm-3) | 3.69 | 3.58 | 2.50 |
Young modulus/GPa | 334 | 238 | 72 |
Bending strength/MPa | 220-550 | 180-450 | 50-55 |
Knoop hardness/GPa | 14-18 | 12-15 | 5.0-5.5 |
图6 AlON透明陶瓷装甲测试(12.7 mm装甲燃烧弹)后的照片[57]
Fig. 6 Photos of AlON transparent bullet-proof ceramics after firing practice (12.7 mm armored incendiary bomb)[57] (a) Front face of test piece; (b) Back face of test piece
Material | Al2O3f/ Al2O3 | SiCf/SiC | High temperature alloy |
---|---|---|---|
Density/(g·cm-3) | 2.6-2.8 | 2.5-2.9 | 8-9 |
Oxidation resistance | Good | Moderate | Low |
Cost | Low | Moderate | Moderate |
Temperature resistance/℃ | 1100 | 1200 | 1050 |
表3 陶瓷基复合材料与高温合金性能对比[68-69]
Table 3 Performance comparison for ceramic composites and high temperature alloys[68-69]
Material | Al2O3f/ Al2O3 | SiCf/SiC | High temperature alloy |
---|---|---|---|
Density/(g·cm-3) | 2.6-2.8 | 2.5-2.9 | 8-9 |
Oxidation resistance | Good | Moderate | Low |
Cost | Low | Moderate | Moderate |
Temperature resistance/℃ | 1100 | 1200 | 1050 |
Type | Electromagnetic | Electrostatic | Piezoelectric |
---|---|---|---|
Energy density/ (mJ·cm-3) | 24.8 | 4 | 35.4 |
Assumption | 0.25 T magnetic field | 3´107 V·m-1 electric field | PZT 5H material |
表4 3种主要振动能量收集器的能量密度对比[99]
Table 4 Comparison of energy density for three major vibration energy harvesters[99]
Type | Electromagnetic | Electrostatic | Piezoelectric |
---|---|---|---|
Energy density/ (mJ·cm-3) | 24.8 | 4 | 35.4 |
Assumption | 0.25 T magnetic field | 3´107 V·m-1 electric field | PZT 5H material |
图11 Lord-Microstrain Sensing Systems公司的Bell 412型变距拉杆在自供电无线传感器中的应用[100]
Fig. 11 Self-powering wireless sensor package based on Bell 412 pitch links from Lord-Microstrain Sensing Systems corporation[100]
Area or site | Structure component | Demand for advanced ceramic material |
---|---|---|
Energy impact protection areas | High energy impact protection components, such as occupant seats | Reaction bonding of complex-shaped and monolithic opaque armor ceramics, transparent polycrystal armor ceramics |
Low energy impact protection components, such as leading edge of rotor blades | Compound coating of metal and ceramics | |
Heat energy impact protection components, such as engine cowling | Hybrid ceramic matrix composite/polymer matrix composite materials | |
Energy conversion sites | Mechanical and electrical energy conversion components, such as smarting rotor | Flexible hybrid electronic-structural composites |
Electromagnetic and heat energy conversion components, such as rotor blades | Microwave-absorbing ceramic composites made of polymer-derived ceramics | |
Corrosion protection areas | Landing gear sleeves | High-performance Sol-Gel coating |
表5 特定结构部位先进陶瓷材料需求
Table 5 Demands for advanced ceramic materials in specific structural components
Area or site | Structure component | Demand for advanced ceramic material |
---|---|---|
Energy impact protection areas | High energy impact protection components, such as occupant seats | Reaction bonding of complex-shaped and monolithic opaque armor ceramics, transparent polycrystal armor ceramics |
Low energy impact protection components, such as leading edge of rotor blades | Compound coating of metal and ceramics | |
Heat energy impact protection components, such as engine cowling | Hybrid ceramic matrix composite/polymer matrix composite materials | |
Energy conversion sites | Mechanical and electrical energy conversion components, such as smarting rotor | Flexible hybrid electronic-structural composites |
Electromagnetic and heat energy conversion components, such as rotor blades | Microwave-absorbing ceramic composites made of polymer-derived ceramics | |
Corrosion protection areas | Landing gear sleeves | High-performance Sol-Gel coating |
[1] | HWANG C, DU J, YANG Q R, et al. Addressing amorphization and transgranular fracture of B4C through Si doping and TiB2 microparticle reinforcing. Journal of the American Ceramic Society, 2022, 105(5): 2959. |
[2] | SHEN Y D, YANG M Y, GODDARD W A, et al. Strengthening boron carbide by doping Si into grain boundaries. Journal of the American Ceramic Society, 2022, 105(5): 2978. |
[3] | YANG Q R, ÇELIK A M, DU J, et al. Advancing the mechanical properties of Si/B Co-doped boron carbide through TiB2 reinforcement. Materials Letters, 2020, 266: 127480. |
[4] | GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging. NDT & E International, 2022, 129: 102636. |
[5] | GAO J L, KEDIR N, KIRK C D, et al. High-speed synchrotron X-ray phase-contrast imaging for evaluating microscale damage mechanisms and tracking cracking behaviors inside cross-ply GFRCs. Composites Science and Technology, 2021, 210: 108814. |
[6] | PRAMEELA S E, YI P, HOLLENWEGER Y, et al. Strengthening magnesium by design: integrating alloying and dynamic processing. Mechanics of Materials, 2022, 167: 104203. |
[7] | University of Bristol. Shape Adaptive Blades for Rotorcraft Efficiency--SABRE project. (2021-04-13)[2024-11-13]. https://sabreproject.eu. |
[8] | Hybrid ceramic matrix composites/polymer matrix composite skin materials. Triton Systems Inc. Department of the Navy SBIR/STTR Transition Program. ONR Approval#43-8692-21. |
[9] | HAYUN S. Reaction-bonded boron carbide for lightweight armor: the interrelationship between processing, microstructure, and mechanical properties. American Ceramic Society Bulletin, 2017, 96(6): 20. |
[10] | RAMISETTY M, SASTRI S, KASHALIKAR U, et al. Transparent polycrystalline cubic spinels protect and defend. American Ceramic Society Bulletin, 92(2): 20. |
[11] | RUSSELL K, GERSTNER N, KRAMMER M, et al. CH-53K heavy lift helicopter--a survivability focused design. American Helicopter Society International Annual Forum, Virgina, 2011. |
[12] | MARTIN R, GOFF A, KOENE B, et al.Durable, hydrophobic surface treatment for enhanced corrosion protection of landing gear. DOD-Allied Nations Technical Corrosion Conference, Virgina, 2022: 19611. |
[13] | ZELENIKA S, HADAS Z, BADER S, et al. Energy harvesting technologies for structural health monitoring of airplane components--a review. Sensors, 2020, 20(22): 6685. |
[14] | LEE H, ZHANG S J, BAR-COHEN Y, et al. High temperature, high power piezoelectric composite transducers. Sensors, 2014, 14(8): 14526. |
[15] | SINEM S M, LEVENT U.Vibration reduction in a helicopter using active twist rotor blade method. 7th European Conference for Aeronautics and Space Sciences, Saïx, 2017. |
[16] | ZHU D M. Aerospace ceramic materials: thermal, environmental barrier coatings and SiC/SiC ceramic matrix composites for turbine engine applications. (2018-05-01)[2024-11-13]. https://ntrs.nasa.gov/citations/20180002984. |
[17] | 邓景辉. 直升机技术发展与展望. 航空科学技术, 2021, 32(1): 10. |
[18] | DARMSTADT P R, ROBUCK M J, MOORE R F, et al.Composites for advanced drive system, a systems analysis--revolutionary vertical lift technology (RVLT). NASA/CR—2019-220237. |
[19] | 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想. 空气动力学学报, 2021, 39(3): 1. |
[20] | 吕春雷, 黄利. 下一代直升机技术发展方向研究. 航空制造技术, 2016, 59(8): 51. |
[21] | HISCHBERG M.The future of vertical flight. 75th American Helicopter Society Annual Forum, Pennsylvania, 2019. |
[22] | 宋焕成, 梁志勇, 张佐光. 武装直升机与陶瓷/复合材料装甲. 航空制造工程, 1994(9): 9. |
[23] | MARRONE A, ROCCA G L. Future military helicopters: technological innovation and lessons learned from Ukraine. Istituto Affari Internazionali, Rome . |
[24] | 陈晓楠, 韩志文, 褚世永. 俄乌冲突中俄空天军直升机运用对直升机装备建设的启示. 指挥控制与仿真, 2023, 45(6): 19. |
[25] | WILLIAM A. Rotary wing (RW) mishaps in DVE: latest statistics. EN-HFM-265-01. Florida, NATO Science and Technology Organization, 2017. |
[26] | NAMPY S N, SMITH E, BAKIS C.Advanced grid-stiffened composite shells for heavy-lift helicopter blade spars. 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Reston, 2014. |
[27] | MESTRE V, SCHOMER P, LIU K. Helicopter noise information for airports and communities. Washington: National Academies Press, 2016. |
[28] | 路录祥, 王江河.直升机降噪技术. 第十六届全国直升机年会, 南京, 2000. |
[29] | FULLER R M. Adaptive noise reduction techniques for airborne acoustic sensors. Dayton: Wright State University, 2012. |
[30] | 刘芙群, 顾仲权. 智能旋翼——直升机减振降噪的治本技术. 国际航空, 2001(8): 24. |
[31] | 刘孝辉, 徐新喜, 白松, 等. 军用直升机振动与噪声控制技术. 直升机技术, 2013(1): 67. |
[32] | 冯剑波, 陆洋. 直升机旋翼桨涡干扰噪声主动控制技术综述. 噪声与振动控制, 2018, 38(3): 1. |
[33] | KIM J, LEE J K. Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material. The Journal of the Acoustical Society of America, 2002, 112(3): 990. |
[34] | SOU U T. Investigation into the effects of blade tip twist on noise reduction for a NACA 0012 rotor blade. McNair Research Journal SJSU, 2019, 15(1): 121. |
[35] | LEIF A.Damage tolerance and durability of structural power composites. AFRL-AFOSR-UK-TR-2021-0013. |
[36] | 刘天一, 张汉鸿, 杨禹. 高耐热陶瓷涂覆锂离子电池隔膜研究进展. 广东化工, 2021, 48(8): 137. |
[37] | 崔腾飞, 高蒙, 胡建清, 等. 海洋环境对直升机基础产品腐蚀行为影响研究. 装备环境工程, 2023, 20(5): 19. |
[38] | 张黎明, 张继垒. 舰载直升机旋翼迎风面防护技术研究进展. 装备环境工程, 2023, 20(7): 63. |
[39] | GOFF A, SPRINKLE C, MARTIN R, et al.Durable Sol-Gel surface treatment to mitigate galvanic corrosion. Department of Defense Allied Nations Technical Corrosion Conference, Virginia, 2019. |
[40] | CHARLES T W, THOMAS M H, DONALD F, et al.Characterization of ALONTM optical ceramic. SPIE Defense and Security Symposium, Orlando, 2005. |
[41] | KARANDIKAR P G, AGHAJANIAN M K, AGRAWAL D, et al.Microwave assisted (mass) processing of metal-ceramic and reaction-bonded composites// Ceramic Engineering and Science Proceedings. Hoboken: John Wiley & Sons Inc., 2008. |
[42] | HACKLER D.Complex flexible hybrid electronic labels. 2018FLEX Session 9.1: Flexible Electronics Applications,Milpitas, 2018. |
[43] | Air Force Sustainment Center. Durable rain-repellent coatings for aircraft transparencies. Air force SBIR/STTR program, 2017. |
[44] | ANTIFORAL A, TOULMAY F. CLEAN SKY--the green rotorcraft integrated technology demonstrator-state of play three years after kick-off. 37th European Rotorcraft Forum, Ticino Park, 2011. |
[45] | KÜFMANN P M, BARTELS R, WALL B G, et al. The second wind-tunnel test of DLR’s multiple swashplate system. CEAS Aeronautical Journal, 2019, 10(2): 385. |
[46] | KALOW S, KAMP V D, KEIMER B, et al. Next generation active twist helicopter rotor blade—simulated results validated by experimental investigation. 45th European Rotorcraft Forum,Warsaw, 2019. |
[47] | DEAS T. Aircraft survivability advances against hard to detect small arms, RPG and MANPADS threats. 68th American Helicopter Society Annual Forum, Fort Worth TX, 2012. |
[48] | AYLWORTH W. The evolving threat & operational environment’s impact on aircraft vulnerability reduction. 74th AHS International Annual Forum & Technology Display, Phoenix Arizona, 2018. |
[49] | CHAIT R, LYONS J, LONG D. Critical technology events in the development of the Apache helicopter. ADA450121. 2006. |
[50] | COUCH M, LINDELL D.Study on rotorcraft safety and survivability. 66th American Helicopter Society Annual Forum,Phoenix, 2010. |
[51] | PORTANOVA M A, DELMONT R M, BRESLIN M C. Critical component protection (CCP) increased vulnerability reduction for rotorcraft. Aircraft Survivability Journal, 2013. |
[52] | PATTERSON M C L, DIGIOVANNI A, FERENBACHLER L, et al.Spinel: gaining momentum in optical applications.Proc. SPIE 5078, Window and Dome Technologies VIII, Bellingham, 2003. |
[53] | JHA S K, SOHN Y H, SASTRI S, et al. Al-O-N based duplex coating system for improved oxidation resistance of superalloys and NiCrAlY coatings. Surface and Coatings Technology, 2004, 183(2/3): 224. |
[54] | HARTNETT T M, BERNSTEIN S D, MAGUIRE E A, et al. Optical properties of ALON (aluminum oxynitride). Infrared Physics & Technology, 1998, 39(4): 203. |
[55] | PARIMAL J P, HSIEH A J, GILDE G A.Improved low-cost multi-hit transparent armor. ADA481074. U.S. Army Research Laboratory, 2006. |
[56] | Automotive tank purchase description: purchase description-transparent armor.ATPD 2352R. 2010. |
[57] | PORTANOVA M A, DELMONT R M, BRESLIN M C. Development of multiple impact transparent armor systems. Aircraft Survivability Journal, 2013. |
[58] | Johns Hopkins Extreme Materials Institute. CMEDE (Center for materials in extreme dynamic environments) research. (2022-07-16) [2024-11-13]. https://hemi.jhu.edu/cmede/wp-content/uploads/2022/07/MBD-process-2022. |
[59] | HWANG C, DIPIETRO S, XIE K Y, et al. Small amount TiB2 addition into B4C through sputter deposition and hot pressing. Journal of the American Ceramic Society, 2019, 102(8): 4421. |
[60] | MCCAULEY J W. Institutional and technical history of requirements-based strategic armor ceramics basic research leading up to the multiscale material by design materials in extreme dynamic environments (MEDE) program. Part I. Brief history of institutional changes and relevant major research programs. International Journal of Ceramic Engineering & Science, 2023, 5(3): e10176. |
[61] | WEIGEL W D. Advanced rotor blade erosion protection system. ADA314355. Aviation Applied Technology Directorate, 1996. |
[62] | THOMAS W A, HONG S C, YU C Y, et al. Enhanced erosion protection for rotor blades. 65th American Helicopter Society Annual Forum, Texas, 2009. |
[63] | Rotor blade erosion protection manual.Technical Bulletin. TB 1-1615-351-23. |
[64] | HONG S C. Hontek HC05XP1 VS. 3M Tap. Comparison of hrdrolysis resistance and others. A White Paper, 2010. |
[65] | Leading edge protective coating against fluid and particulate erosion for turbofan blades. (2020-05-11)[2024-09-05]. https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/apl/delta-mds_0520.pdf. |
[66] | America’s Phenix Inc. Leading edge protective coating against fluid and particulate erosion for turbofan blades. (2019-11-21) [2024-09-05]. https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/apl/mds_delta.pdf. |
[67] | MDS Coating Technologies Corporation. MDS coating technologies announces new trade name for coating family BlackGoldTM. News Release, 2012. |
[68] | NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2): 155. |
[69] | WILSON D M, VISSER L R. High performance oxide fibers for metal and ceramic composites. Composites Part A: Applied Science and Manufacturing, 2001, 32(8): 1143. |
[70] | MISRA A.Advanced ceramic materials for future aerospace applications. 39th International Conference and Exposition on Advanced Ceramics and Composites, Daytona, 2015. |
[71] | NGUYEN K, CHOPRA I. Effects of higher harmonic control on rotor performance and control loads. Journal of Aircraft, 1992, 29(3): 336. |
[72] | JOHSON W. Recent development in dynamics of advanced rotor systems part. Vertica, 1986, 10(11): 73. |
[73] | KINZEL M P, MAUGHMER M D, LESIEUTRE G A. Miniature trailing-edge effectors for rotorcraft performance enhancement. Journal of the American Helicopter Society, 2007, 52(2): 146. |
[74] | YOU Y, JUNG S N. Optimum active twist input scenario for performance improvement and vibration reduction of a helicopter rotor. Aerospace Science and Technology, 2017, 63: 18. |
[75] | CHOPRA I. Status of application of smart structures technology to rotorcraft systems. Journal of the American Helicopter Society, 2000, 45(4): 228. |
[76] | CHOPRA I. Review of state of art of smart structures and integrated systems. AIAA Journal, 2002, 40: 2145. |
[77] | SCHWARTZ R W, BALLATO J, HAERTLING G H. Piezoelectric and electro-optic ceramics// BUCHANAN R C. Ceramic Materials for Electronics. Boca Raton: Taylor and Franics Group , 2017. |
[78] | STRAUB F K, ANAND V R, BIRCHETTTE T S, et al.Smart rotor development and wind tunnel test. Proceedings of the 35th European Rotorcraft Forum, Hamburg, 2009. |
[79] | HAGERTY B, KOTTAPALLI S. Boeing SMART rotor full scale wind tunnel test data report. NASA/TM-2012-216048. |
[80] | DIETETICH O, ENENKL B, ROTH D.Trailing edge flaps for active rotor control aeroelastic characteristics of the ADASYS rotor system. American Helicopter Society 62nd Annual Forum Proceedings, Phoenix, 2006. |
[81] | ROTH D, ENENKL B, DIETETICH O.Active rotor control by flaps for vibration reduction-full scale demonstrator and first flight test results. Proceedings of 32nd European Rotorcraft Forum, Maastricht, 2006. |
[82] | CEDRAT TECHNOLOGIES.Products Catalog Version 4.1. 4.11 Amplified piezoelectric actuators APA XL series. |
[83] | WILLIAMS R B, GRIMSLEY B W, INMAN D J, et al.Manufacturing and mechanics-based characterization of macro fiber composite actuators.ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, 2008. |
[84] | SHEN J, THORINBURGH R P, KRESHOCK A R, et al.Preliminary design and evaluation of an airfoil with continuous trailing-edge flap. AHS Future Vertical Lift Aircraft Design Conference, San Francisco, 2012. |
[85] | THORINBURGH R P, KRESHOCK A R, WILBUR M L, et al.Continuous trailing-edge flaps for primary flight control of a helicopter main rotor. Proceedings of the 70th Annual Forum of the American Helicopter Society, Montreal Quebec, 2014. |
[86] | SHEN J, THORINBURGH R P, LIU Y, et al.Design and optimization of an airfoil with active continuous trailing-edge flap. Proceedings of the 69th Annual Forum of the American Helicopter Society, Phoenix, 2013. |
[87] | CARLOS E S, CESNIK S S, WILKIE W K, et al. Modeling design and testing of the NASA/ARMY/MIT active twist rotor prototype blade. American Helicopter Society 55th Annual Forum,Montreal, 1999. |
[88] | PARK J S, KIM J H. Design and aeroelastic analysis of active twist rotor blades incorporating single crystal macro fiber composite actuators. Composites Part B: Engineering, 2008, 39(6): 1011. |
[89] | WIERACH P, RIEMENSCHNEIDER J, OPITZ S, et al. Experimental investigation of an active twist model rotor blade under centrifugal loads. Heidelberg: Springer, 2012. |
[90] | Research topics in aerospace:adaptive, tolerant and efficient composite structures. Heidelberg: Springer, 2012. |
[91] | HOFFMANN F, SCHNEIDER O, WALL V D, et al. STAR hovering test—proof of functionality and representative results. 40th European Rotorcraft Forum,Southampton, 2014. |
[92] | WIERACH P, OPITZ S, KALOW S. Experimental investigation of an active twist model rotor blade with a low voltage actuation system. The Aeronautical Journal, 2015, 119(1222): 1499. |
[93] | KALOW S, KAMP V D, RIEMENSCHNEIDER J, et al. Experimental investigation and validation of structural properties of a new design for active twist rotor blades. 43rd European Rotorcraft Forum,Milan, 2017. |
[94] | KALOW S, KAMP V D, RIEMENSCHNEIDER J, et al. Manufacturing of a next generation active twist helicopter rotor blade and experimental results of functionality test. American Helicopter Society 74th Annual Forum,Phoenix, 2018. |
[95] | WALL B G, LIM J W, RIEMENSCHNEIDER J, et al. New smart twisting active rotor (STAR): pretest predictions. CEAS Aeronautical Journal, 2024, 15(3): 721. |
[96] | LIN M, CHANG F K. The manufacture of composite structures with a built-in network of piezoceramics. Composites Science and Technology, 2002, 62(7/8): 919. |
[97] | WILDSCHEK A, STORM S, HERRING M, et al.Design, optimization, testing, verification, and validation of the wingtip active trailing edge// Smart intelligent aircraft structures (SARISTU). Cham: Springer International Publishing, 2015. |
[98] | LOVERICH J, FRANK J, SZEFI J, et al. Rotary wing dynamic component structural life tracking with self-powered wireless sensors. American Helicopter Society 66th Annual Forum,Phoenix, 2010. |
[99] | SHI Y, HALLETT S R, ZHU M L. Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: part I--integration and experiment. Composite Structures, 2017, 160: 1279. |
[100] | STEVEN W A, CHRISROPHER P T, CHURCHILL D L, et al. Tracking pitch link dynamic loads with energy harvesting wireless sensors. American Helicopter Society 63rd Annual Forum,Virginia, 2007. |
[101] | THOMAS L, CHRISTOPHER P T, et al.Energy harvesters for rotorcraft wireless sensor networks. 8th DSTO International Conference on Health & Usage Monitoring, Geelong, 2013. |
[102] | DANIEL M W, FRATTINI T, CHURCHILL D L.Development of a helicopter on-rotor HUM system powered by vibration energy harvesting. 40th European Rotorcraft Forum,Milan, 2014. |
[103] | MOORE D. Energy harvesting, wireless structural health monitoring system for helicopter rotors. Navy SBIR, 2013, SBIR contract No. N68335-13-C-0320. |
[104] | MENDOZA E, KEMPEN C, ESTERKIN Y, et al.Energy harvesting, wireless fiber optic sensor (WiFOS™) structural health monitor system for helicopter rotors. 16th Australian International Aerospace Congress, Melbourne, 2015. |
[105] | MOORE D. Low power, low cost, lightweight, multichannel optical fiber interrogation unit for structural health management of rotor blades. Navy SBIR, 2015, SBIR contract No. 68335-16-C-0340. |
[106] | MENDOZA E A, ESTERKIN Y, ANDREAS T.Low power, low cost, lightweight, multichannel optical fiber interrogation system for structural health management of rotor blades. 18th Australian International Aerospace Congress, Melbourne, 2019. |
[107] | ATTICK D. Integrated hybrid structural health monitoring (SHM) system. Navy SBIR, 2016, SBIR contract No. N68335-18-C-0242. |
[108] | GRACE N. North Carolina State University develops CFRP skin for stealth aircraft. Composite World, 2021, 7(9): 18. |
[109] | JIA Y J, CHOWDHURY M A R, ZHANG D J, et al. Wide-band tunable microwave-absorbing ceramic composites made of polymer- derived SiOC ceramic and in situ partially surface-oxidized ultra- high-temperature ceramics. ACS Applied Materials & Interfaces, 2019, 11(49): 45862. |
[110] | JIA Y J, AJAYI T D, ROBERTS M A, et al. Ultrahigh-temperature ceramic-polymer-derived SiOC ceramic composites for high- performance electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2020, 12(41): 46254. |
[111] | JIA Y J, AJAYI T D, WAHLS B H, et al. Multifunctional ceramic composite system for simultaneous thermal protection and electromagnetic interference shielding for carbon fiber-reinforced polymer composites. ACS Applied Materials & Interfaces, 2020, 12(52): 58005. |
[112] | KUMAR P, SRIVASTAVA V K. Tribological behaviour of C/C-SiC composites—a review. Journal of Advanced Ceramics, 2016, 5(1): 171. |
[113] | Airbus Corporation. Airbus approval suppliers list, 2024. |
[114] | Collins Aerospace (Ratier-Figeac). Brakes (Rotor Brakes). (2020-06-23)[2024-11-13]. https://ratier-figeac.fr/en/nos-produits/. |
[115] | Department of the Army.Army science and technology for army aviation 2025--2040. Army science board fiscal year 2015 study, 2015. |
[116] | LE D, RIDDICK J C, WEISS V. “Fatigue-free” platforms: vision for army future rotorcraft.American Helicopter Society 70th Annual Forum, Montreal, 2014. |
[117] | DEWIND E, SOPKO R.Prognostics framework to enable a maintenance free operating period. Vertical Flight Society’s 77th Annual Forum & Technology Display,Virtual, 2021. |
[118] | 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景. 航空材料学报, 2019, 39(5): 34. |
[119] | WANG B, CAI D L, LI S Q, et al. Effect of B4C particle size and TiB2 content on the mechanical properties of B4C composites and their dynamic mechanical properties. International Journal of Applied Ceramic Technology, 2024, 21(1): 438. |
[120] | WANG B, CAI D L, WANG H Y, et al. Microstructures and mechanical properties of B4C-SiC and B4C-SiC-TiB2 ceramic composites fabricated by hot pressing. Journal of the American Ceramic Society, 2023, 106(8): 5046. |
[121] | WANG B, CAI D L, XUE C Y, et al. Preparation and mechanical properties of laminated B4C-TiB2/BN ceramics. Ceramics International, 2021, 47(22): 31214. |
[122] | 刘家希, 石晓东, 姜良宝, 等. 陶瓷基透明防弹装甲研究进展. 材料工程, 2021, 49(11): 30. |
[123] | 李贇.基于MFC的连续后缘襟翼设计与旋翼振动载荷影响分析. 南京: 南京航空航天大学硕士学位论文, 2018. |
[124] | 王雪枫.MFC驱动的智能扭转旋翼模型桨叶研制. 南京: 南京航空航天大学硕士学位论文, 2021. |
[125] | 姚俊唯.PMN-PZT系陶瓷与MFC压电驱动器的制备及性能研究. 南京: 南京航空航天大学硕士学位论文, 2017. |
[126] | 张晓宝.改性PMN-PZT压电陶瓷及其柔性MFC驱动器的制备与性能研究. 南京: 南京航空航天大学硕士学位论文, 2018. |
[127] | WANG Y, QIU L, LUO Y J, et al. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring. Structural Health Monitoring, 2021, 20(3): 861. |
[128] | HE Z, WANG K, ZHAO Z, et al. A wearable flexible acceleration sensor for monitoring human motion. Biosensors, 2022, 12(8): 620. |
[129] | 闫蓉, 李凯. 基于关键压电材料的直升机振动能量收集装置仿真分析. 中国科技信息, 2020(6): 39. |
[130] | 蒋相闻, 招启军, 孟晨. 直升机旋翼桨叶外形对雷达特征信号的影响. 航空学报, 2014, 35(11): 3123. |
[131] | 蒋相闻, 招启军. 考虑旋翼调制影响的直升机RCS特性分析及评估. 航空动力学报, 2014, 29(4): 824. |
[132] | 蒋相闻.直升机气动/雷达隐身特性综合优化设计及应用. 南京: 南京航空航天大学博士学位论文, 2016. |
[133] | 韩敏阳, 韦国科, 周明, 等. 低频雷达吸波材料的研究进展. 复合材料学报, 2022, 39(4): 1363. |
[134] | 徐俊杰, 王岭, 王晓猛, 等. 耐高温吸波材料的研究进展. 现代技术陶瓷, 2024, 45(3): 189. |
[135] | 陈政伟, 黄小萧, 贾德昌, 等. 高温吸波陶瓷材料研究进展. 现代技术陶瓷, 2020, 4(1/2): 1. |
[136] | WANG L, DUAN X M, LIU S J, et al. Synergistic microwave absorption effect of graphene-BN-Fe3O4 composite at thin thickness. Applied Surface Science, 2024, 675: 160959. |
[137] | 迟波, 于博. 碳/碳复合材料的发展及应用研究. 纤维复合材料, 2023, 40(4): 76. |
[138] | 周一帆, 陆贤坤, 刘海平, 等. 航空刹车材料发展概述. 化工设计通讯, 2020, 46(6): 86. |
[139] | 李松梅, 尹晓琳, 刘建华, 等. Zn-Al-[V10O28]6-双层氢氧化物掺杂对LY12铝合金表面溶胶-凝胶涂层性能的影响. 物理化学学报, 2014, 30(11): 2092. |
[140] | 张旋, 钟艳莉, 颜悦, 等. 聚碳酸酯透明材料表面耐磨涂层的纳米力学性能和耐磨性研究. 材料工程, 2014, 42(1): 79. |
[141] | 邹铭, 周晓龙, 黄文文, 等. 金属表面前处理用聚硅氮烷转化膜技术. 涂料工业, 2020, 50(4): 19. |
[142] | 战帅, 吕晓林, 陈翔宇, 等. 吸波涂层对直升机旋翼电磁散射特性影响研究. 舰船电子工程, 2024, 44(7): 190. |
[143] | 白钧生, 王靖, 李碧波, 等. 多类型航空刹车器件性能试验台设计. 机床与液压, 2023, 51(23): 155. |
[144] | SEZNEC M, IVANOFF J G. RACER COUMPOUND helicopter: operational wireless FTI data transfer from rotor up to fuselage. AHS International 78th Annual Forum & Technology Display, Fort Worth, 2022. |
[1] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[2] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[3] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[4] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[5] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[6] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[7] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[8] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[9] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[10] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[11] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[12] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[13] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[14] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[15] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||