| [1] | YIN F, RAO A G. Performance analysis of an aero engine with inter-stage turbine burner. The Aeronautical Journal, 2017,  121(1245): 1605. | 
																													
																						| [2] | SRINIVAS G, RAGHUNANDANA K, SATISH SHENOY B. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications. IOP Conference Series: Materials Science and Engineering, 2018,  314: 012012. | 
																													
																						| [3] | LIN Z M. The current development and future trends of fighter engines. Aeroengine, 2006,  32(1): 1. | 
																													
																						| [4] | BERGS T, GRÜNEBAUM T, FRICKE K, et al. Life cycle assessment for milling of Ti-and Ni-based alloy aero engine components. Procedia CIRP, 2021,  98: 625. | 
																													
																						| [5] | WANG X G, LIU J L, JIN T, et al. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures. Materials Science and Engineering: A, 2014,  598: 154. | 
																													
																						| [6] | ZHANG G, ZHANG Y, ZHENG L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application. Acta Metallurgica Sinica, 2019,  55(9): 1133. DOI
 | 
																													
																						| [7] | FAN X, YIN X. Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites. Advanced Composites and Hybrid Materials, 2018,  1: 685. | 
																													
																						| [8] | PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016,  15(8): 804. DOI    
																																																	PMID
 | 
																													
																						| [9] | KARADIMAS G, SALONITIS K. Ceramic matrix composites for aero engine applications--a review. Applied Sciences, 2023,  13(5): 3017. | 
																													
																						| [10] | KATOH Y, SNEAD L L, HENAGER J C H, et al. Current status and recent research achievements in SiC/SiC composites. Journal of Nuclear Materials, 2014,  455(1/2/3): 387. | 
																													
																						| [11] | DICARLO J A, YUN H M, MORSCHER G N, et al. SiC/SiC composites for 1200 ℃ and above//BANSAL N P. Handbook of ceramic composites. Boston: Springer US, 2005: 77-98. | 
																													
																						| [12] | LUTHRA K L, CORMAN G S. Melt infiltrated (MI) SiC/SiC composites for gas turbine applications//KRENKEL W, NASLAIN R, SCHNEIDER H. High temperature ceramic matrix composites. Ohio: Wiley-American Ceramic Society, 2001: 744-753. | 
																													
																						| [13] | 武安华, 曹文斌, 马芳, 等. SiC的固相热压烧结. 北京科技大学学报, 2000,  22(4): 328. | 
																													
																						| [14] | ISHIKAWA T, KAJII S, MATSUNAGA K, et al. A tough, thermally conductive silicon carbide composite with high strength up to 1600 ℃ in air. Science, 1998,  282(5392): 1295. | 
																													
																						| [15] | HO C Y, TSAI S C, LIN H T, et al. Microstructural investigation of Si-ion-irradiated single crystal 3C-SiC and SA-Tyrannohex SiC fiber-bonded composite at high temperatures. Journal of Nuclear Materials, 2013,  443(1/2/3): 1. | 
																													
																						| [16] | XU Z M, YU Y P, WANG S, et al. Research progress of SiC fiber-bonded ceramics. Journal of Material Engineering, 2023,  51(8): 23. | 
																													
																						| [17] | VERA M C, MARTÍNEZ-FERNÁNDEZ J, SINGH M, et al. Strength and thermal shock resistance of Si-Al-C-O and Si-Ti-C-O fiber-bonded ceramics. International Journal of Applied Ceramic Technology, 2022,  19(2): 1126. | 
																													
																						| [18] | GOU Y, WANG H, JIAN K. Formation of carbon-rich layer on the surface of SiC fiber by sintering under vacuum for superior mechanical and thermal properties. Journal of the European Ceramic Society, 2017,  37(3): 907. | 
																													
																						| [19] | ZHANG Y, CHEN J, YAN D, et al. Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon, 2021,  182: 435. | 
																													
																						| [20] | 王堋人. SA型SiC纤维烧结致密化机理及高温性能研究. 长沙: 国防科技大学博士学位论文, 2020. | 
																													
																						| [21] | YAMAMOTO H, BABA Y, SASAKI T A. Electronic structures of N2+ and O2+ ion-implanted Si (100). Surface and Interface Analysis, 1995,  23(6): 381. | 
																													
																						| [22] | KAJII S, MATSUNAGA K, SATO M, et al. Mechanical behavior of SiC-Polycrystalline fiber-bonded-cermics. 28th International Conference on Advanced Ceramics and Composites B:Ceramic Engineering and Science Proceedings, Hoboken, 2004,  25: 43-48. | 
																													
																						| [23] | CORMAN G S, LUTHRA K L. Silicon melt infiltrated ceramic composites (HiPerComp™)//BANSAL N P. Handbook of ceramic composites. Boston: Springer US, 2005: 99-115. | 
																													
																						| [24] | ZHANG J, ZHANG Y, WANG Y, et al. Long-term oxidation performance of SiCf/SiC composites at 1200 ℃ in air atmosphere manufactured by PIP and hybrid CVI/PIP techniques. Ceramics International, 2024,  50(7): 10259. |