无机材料学报 ›› 2025, Vol. 40 ›› Issue (2): 177-183.DOI: 10.15541/jim20240292 CSTR: 32189.14.10.15541/jim20240292

• 研究论文 • 上一篇    下一篇

SiC纤维烧结陶瓷的制备及其性能研究

李伟(), 许志明, 苟燕子, 尹森虎, 余艺平, 王松()   

  1. 国防科技大学 空天科学学院, 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
  • 收稿日期:2024-06-17 修回日期:2024-09-09 出版日期:2025-02-20 网络出版日期:2024-09-23
  • 通讯作者: 王 松, 研究员. E-mail: wangs_0731@163.com
  • 作者简介:李 伟(1979-), 男, 副研究员. E-mail: liwei79@nudt.edu.cn
  • 基金资助:
    湖南省自然科学基金(2023JJ30634)

Preparation and Performance of Sintered SiC Fiber-bonded Ceramics

LI Wei(), XU Zhiming, GOU Yanzi, YIN Senhu, YU Yiping, WANG Song()   

  1. Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2024-06-17 Revised:2024-09-09 Published:2025-02-20 Online:2024-09-23
  • Contact: WANG Song, professor. E-mail: wangs_0731@163.com
  • About author:LI Wei (1979-), male, associate professor. E-mail: liwei79@nudt.edu.cn
  • Supported by:
    Natural Science Foundation of Hunan Province(2023JJ30634)

摘要:

SiC纤维烧结陶瓷(Fiber-bonded ceramics, FBCs)是由SiC纤维直接烧结而成的一种新型SiC材料, 材料中不存在基体相, 其孔隙率小于3%且纤维体积分数超过90%, 具有耐高温、高强度、抗氧化与耐辐照等优异性能, 是未来航空发动机和先进核能领域的重要候选材料。本工作在国内率先开展SiC FBCs的制备以及性能研究, 以国产KD-SA型第三代含铝SiC纤维为原料, 通过预处理在纤维表面原位构筑石墨(in-situ graphite, iG)层, 采用热压烧结工艺直接烧结纤维, 制备SiC(Al) FBCs。实验表征了纤维及材料的宏/微观结构, 测试了材料的力学与氧化性能。结果表明: 通过预处理SiC(Al)纤维, iG/SiC(Al)纤维表面可生成厚度为300~400 nm的碳层, 且iG层与纤维结合较好。采用热压烧结工艺制备的iG/SiC(Al) FBCs密度为3.15 g/cm3, 气孔率仅为0.52%, 基体完全致密, 纤维发生变形呈六棱柱状, 且纤维之间有明显的界面; 材料弯曲强度、断裂韧性与断裂功分别为320 MPa、9.5 MPa·m1/2与1169 J·m-2; 经1500、1600 ℃空气氧化100 h, 材料弯曲强度保留率分别高达86%与72%, 且维持伪塑性断裂模式。

关键词: SiC纤维, SiC纤维烧结陶瓷, 力学性能, 氧化性能

Abstract:

SiC fiber-bonded ceramics (FBCs), representing a novel class of SiC materials, synthesized via direct sintering of SiC fibers and characterized by lack of a matrix phase, porosity below 3% and fiber volume fraction exceeding 90%, exhibit remarkable properties, including high-temperature resistance, high strength, and robust resistance to oxidation and irradiation. Consequently, they are a promising contender for future aero-engine and advanced nuclear energy applications. Herein, SiC(Al) FBCs were prepared by pre-treating the fibers to form in-situ graphite (iG) layers on their surface, followed by direct sintering the fibers using a hot-press sintering process. Then, macroscopic/microscopic structures, mechanical properties and oxidative properties of the fibers and bulk ceramics were characterized. The results show that pre-treatment of SiC(Al) fibers leads to forming a 300-400 nm thick carbon layer, adhering well to the fibers. Density of the hot-press sintered iG/SiC(Al) FBCs is 3.15 g/cm3, with a porosity of only 0.52%. Meanwhile, the matrix is completely dense, the fibers are deformed in a new form of hexagonal prisms, and the well-defined interfaces are present between the fibers. Furthermore, bending strength, fracture toughness, and work of fracture of the bulk ceramics are 320 MPa, 9.5 MPa·m1/2 and 1169 J·m-2, respectively. After oxidation at 1500 and 1600 ℃ for 100 h in air, the retention rates of the flexural strength remain as high as 86% and 72%, respectively, while maintaining a quasi-plastic fracture mode.

Key words: SiC fiber, sintered SiC fiber-bonded ceramic, mechanical performance, oxidation performance

中图分类号: