无机材料学报 ›› 2023, Vol. 38 ›› Issue (7): 830-838.DOI: 10.15541/jim20220662 CSTR: 32189.14.10.15541/jim20220662
所属专题: 【生物材料】骨骼与齿类组织修复(202409)
吴未1,2(), BAKHET Shahd2, ASANTE Naomi Addai2, KAREEM Shefiu2, KOMBO Omar Ramadhan3, 李宾斌2, 戴红莲1,2(
)
收稿日期:
2022-11-05
修回日期:
2022-12-18
出版日期:
2023-03-20
网络出版日期:
2023-03-20
通讯作者:
戴红莲, 教授. E-mail: daihonglian@whut.edu.cn作者简介:
吴 未(1998-), 女, 硕士. E-mail: 2625276216@qq.com
WU Wei1,2(), BAKHET Shahd2, ASANTE Naomi Addai2, KAREEM Shefiu2, KOMBO Omar Ramadhan3, LI Binbin2, DAI Honglian1,2(
)
Received:
2022-11-05
Revised:
2022-12-18
Published:
2023-03-20
Online:
2023-03-20
Contact:
DAI Honglian, professor. E-mail: daihonglian@whut.edu.cnAbout author:
WU Wei (1998-), male, Master. E-mail: 2625276216@qq.com
Supported by:
摘要:
磷酸三钙(β-TCP)陶瓷替代材料由于其与骨矿物成分相近及良好的生物相容性和骨传导性, 近年来被广泛关注, 常以纳米颗粒、支架和微球等形式用于骨修复。本研究制备了五种不同的磷酸三钙/磷酸三镁(TMP) (TCP、25% TMP、50% TMP、75% TMP和TMP)复合微球并作了相应表征。随着复合微球中TMP含量增加, 微球释放的Mg2+和Ca2+的累积浓度增加, 且TMP可以调节复合微球的降解速率。以小鼠胚胎成骨细胞前体细胞(MC3T3-E1)和人脐静脉内皮细胞(HUVECs)为模型, 评价了该复合微球的生物相容性、成血管和成骨作用。结果表明, 与TCP、TMP和75% TMP相比, 25% TMP和50% TMP复合微球具有更好的细胞相容性, 对HUVECs有一定的促增殖作用。因此, 含25% TMP和50% TMP的复合微球对血管生成和成骨具有更积极的作用。
中图分类号:
吴未, BAKHET Shahd, ASANTE Naomi Addai, KAREEM Shefiu, KOMBO Omar Ramadhan, 李宾斌, 戴红莲. 双相磷酸镁钙微球体外成血管和促成骨研究[J]. 无机材料学报, 2023, 38(7): 830-838.
WU Wei, BAKHET Shahd, ASANTE Naomi Addai, KAREEM Shefiu, KOMBO Omar Ramadhan, LI Binbin, DAI Honglian. In vitro Study of Biphasic Calcium Magnesium Phosphate Microspheres for Angiogenesis and Bone Formation[J]. Journal of Inorganic Materials, 2023, 38(7): 830-838.
Gene | Primer sequence |
---|---|
VEGF | AGGAGTACCCCGACGAGATAGA CACATCTGCTGTGCTGTAGGAA |
FGF | ACAGGAGCGACCAGCACATT TTGGTGTCTGCGAGCCGTAT |
COL I | CACTGCAAGAACAGCGTAGC AAGTTCCGGTGTGACTCGTG |
OPN | ACACTTTCACTCCAATCGTCCCTAC GGACTCCTTAGACTCACCGCTCTT |
Table 1 Primer sequences used in RT-qPCR
Gene | Primer sequence |
---|---|
VEGF | AGGAGTACCCCGACGAGATAGA CACATCTGCTGTGCTGTAGGAA |
FGF | ACAGGAGCGACCAGCACATT TTGGTGTCTGCGAGCCGTAT |
COL I | CACTGCAAGAACAGCGTAGC AAGTTCCGGTGTGACTCGTG |
OPN | ACACTTTCACTCCAATCGTCCCTAC GGACTCCTTAGACTCACCGCTCTT |
Fig. 2 SEM images of different microsphere composites with insets showing their corresponding particle size distributions (a)TCP; (b) 25% TMP; (c) 50% TMP; (d) 75% TMP; (e) TMP
Fig. 5 Cell viabilities of (a) MC3T3-E1 and (b) HUVECs assessed by CCK-8 assay (a) MC3T3-E1 and (b) HUVECs assayed on day 1, 3, 5 cultured with different microspheres concentration extracts *: p < 0.01; **: p < 0.005; ***: p < 0.0002; Colorful figures are available on website
[1] |
NARITA K, KOBAYASHI E, SATO TJMT. Sintering behavior and mechanical properties of magnesium/β-tricalcium phosphate composites sintered by spark plasma sintering. Materials Transactions, 2016, 57(9):1620.
DOI URL |
[2] | CHUTHATHIP M, AHMAD-FAUZI M N, YANNY-MARLIANA B I, et al. Effect of magnesium oxide on physical and biological properties in β-tricalcium phosphate ceramic. Journal of Physics Conference Series, 2018, 1082(1):012026. |
[3] |
BASU S, BASU B. Doped biphasic calcium phosphate: synthesis and structure. Journal of Asian Ceramic Societies, 2019, 7(3):265.
DOI |
[4] |
GHIȚULICĂ C D, CUCURUZ A, VOICU G, et al. Ceramics based on calcium phosphates substituted with magnesium ions for bone regeneration. International Journal of Applied Ceramic Technology, 2020, 17(1):342.
DOI URL |
[5] | MAJI K, DASGUPTA S. Effect of β-tricalcium phosphate nanoparticles additions on the properties of gelatin-chitosan scaffolds. Bioceramics Development & Applications, 2017, 7(2):1000103. |
[6] |
MURAKAMI S, MIYAJI H, NISHIDA E, et al. Dose effects of beta-tricalcium phosphate nanoparticles on biocompatibility and bone conductive ability of three-dimensional collagen scaffolds. Dental Materials Journal, 2017, 36(5):573.
DOI PMID |
[7] | FANG Z Z. Sintering of advanced materials. Cambridge: Elsevier, 2010: 33- 85. |
[8] | KAUR I, ELLIS L J, ROMER I, et al. Dispersion of nanomaterials in aqueous media: towards protocol optimization. Journal of Visualized Experiments, 2017, 130: e56074. |
[9] |
XUE W, DAHLQUIST K, BANERJEE A, et al. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. Journal of Materials Science: Materials in Medicine, 2008, 19(7):2669.
DOI URL |
[10] |
GUO X, LONG Y, LI W, et al. Osteogenic effects of magnesium substitution in nano-structured β-tricalcium phosphate produced by microwave synthesis. Journal of Materials Science, 2019, 54(16):11197.
DOI |
[11] |
ELIAZ N, METOKI N J M. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials, 2017, 10(4):334.
DOI URL |
[12] |
RAO R R, ROOPA H N, KANNAN T S. Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders. Journal of Materials Science: Materials in Medicine, 1997, 8(8):511.
DOI URL |
[13] |
RUIZ-AGUILAR C, OLIVARES-PINTO U, AGUILAR-REYES E A, et al. Characterization of β-tricalcium phosphate powders synthesized by Sol-Gel and mechanosynthesis. Boletín de la Sociedad Española de Cerámica y Vidrio, 2018, 57(5):213.
DOI URL |
[14] |
ANDO J. Tricalcium phosphate and its variation. Bulletin of the Chemical Society of Japan, 1958, 31(2):196.
DOI URL |
[15] | OLSSON M. Chemical stability of grain boundariesinβ-tricalcium phosphate ceramics: β-TCP as bone substitute material. Department of Chemistry-Ångström, 2012, 42586904. |
[16] | SGLAVO VM, FRASNELLI M. Effect of Mg2+ doping on beta- alpha phase transition in tricalcium phosphate (TCP) bioceramics. Acta Biomaterialia, 2016, 33: 283. |
[17] |
MA Y, DAI H, HUANG X, et al. 3D printing of bioglass-reinforced β-TCP porous bioceramic scaffolds. Journal of Materials Science, 2019, 54(14):10437.
DOI |
[18] | GALLO M, SANTONI B L G, DOUILLARD T, et al. Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Acta Biomaterialia, 2019, 89: 391. |
[19] |
TAVARES D D S, CASTRO L D O, SOARES G D D A, et al. Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. Journal of Applied Oral Science, 2013, 21(1):37.
DOI URL |
[20] |
LEE D, SFEIR C, KUMTA P N J M S, et al. Novel in-situ synthesis and characterization of nanostructured magnesium substituted β-tricalcium phosphate (β-TCMP). Materials Science, 2009, 29(1):69.
DOI URL |
[21] |
MARCHI J, DANTAS A, GREIL P, et al. Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Materials Research Bulletin, 2007, 42(6):1040.
DOI URL |
[22] |
RYU H-S, HONG KS, LEE J-K, et al. Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials, 2004, 25(3):393.
DOI URL |
[23] |
ZHANG X, JIANG F, GROTH T, et al. Preparation, characterization and mechanical performance of dense β-TCP ceramics with/ without magnesium substitution. Journal of Materials Science: Materials in Medicine, 2008, 19(9):3063.
DOI URL |
[24] |
ONUMA K, IIJIMA M J C. Nanoparticles in β-tricalcium phosphate substrate enhance modulation of structure and composition of an octacalcium phosphate grown layer. CrystEngComm, 2017, 19(44):6660.
DOI URL |
[25] |
SADER M S, LEGEROS R Z, SOARES G A. Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. Journal of Materials Science: Materials in Medicine, 2009, 20(2):521.
DOI URL |
[26] |
LIN L C, CHANG S J, KUO S M, et al. Preparation and evaluation of β-TCP/polylactide microspheres as osteogenesis materials. Journal of Applied Polymer Science, 2008, 108(5):3210.
DOI URL |
[27] | YUAN Z, WEI P, HUANG Y, et al. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomaterialia. 2019, 85: 294. |
[28] | WANG J, XU J, HOPKINS C, et al. Biodegradable magnesium ased implants in orthopedics: a general review and perspectives. Advanced Science, 2020, 7(8):201902443. |
[29] |
LIN S, YANG G, JIANG F, et al. Bone regeneration: a magnesiumnriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Advanced Science, 2019, 6(12):1900209.
DOI URL |
[30] | PAN C, SUN X, XU G, et al. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of beta- TCP/Zn-Mg composites. Materials Science & Engineering C, 2020, 108: 110397. |
[31] |
ZHANG H, SHEN Y, XIONG Y, et al. Microstructural, mechanical properties and strengthening mechanism of DLP produced β-tricalcium phosphate scaffolds by incorporation of MgO/ZnO/58S bioglass. Ceramics International, 2021, 47(18):25863.
DOI URL |
[32] |
ZHANG J. TANG L, QI H, et al. Dual function of magnesium in bone biomineralization, Advanced Healthcare Materials, 2019, 8(21):1901030.
DOI URL |
[33] | LIN X, GE J, WEI D, et al. Surface degradation-enabled osseointegrative, angiogenic and antiinfective properties of magnesium- modified acrylic bone cement. Journal of Orthopaedic Translation. 2019, 17: 121. |
[34] |
HE F, TIAN Y, FANG X, et al. Porous calcium phosphate composite bioceramic beads. Ceramics International, 2018, 44(11):13430.
DOI URL |
[35] | HO V H, TRIPATHI G, GWON J, et al. Novel TOCNF reinforced injectable alginate/β-tricalcium phosphate microspheres for bone regeneration. Materials & Design, 2020, 194: 108892. |
[36] |
MURAKAMI M, NGUYEN L T, HATANAKA K, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. The Journal of Clinical Investigation, 2011, 121(7):2668.
DOI URL |
[37] |
OLIVARES-NAVARRETE R, HYZY S L, GITTENS R A, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. The Spine Journal, 2013, 13(11):1563.
DOI URL |
[38] |
MATKAR P N, ARIYAGUNARAJAH R, LEONG-POI H, et al. Friends turned foes: angiogenic growth factors beyond angiogenesis. Biomolecules, 2017, 7(4):74.
DOI URL |
[39] |
CHIM S M, TICKNER J, CHOW S T, et al. Angiogenic factors in bone local environment. Cytokine Growth Factor Reviews, 2013, 24(3):297.
DOI URL |
[40] |
TAN A W, LIAU L L, CHUA K H, et al. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces. Scientific Reports, 2016, 6(1):21828
DOI |
[41] |
PRZYBYLSKI M. A review of the current research on the role of bFGF and VEGF in angiogenesis. Journal of Wound Care, 2009, 18(12):516.
PMID |
[42] | CHEN Y, OU Y, DONG J, et al. Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Experimental Cell Research, 2017, 363(1):343. |
[43] | BHASKAR B, OWEN R, BAHMAEE H, et al. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds, Journal of Biomedical Research Part A, 2018, 106(5):1334. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 谭敏, 陈小武, 杨金山, 张翔宇, 阚艳梅, 周海军, 薛玉冬, 董绍明. 流延成型结合反应熔渗制备ZrB2-SiC陶瓷及其微观结构与氧化行为研究[J]. 无机材料学报, 2024, 39(8): 955-964. |
[3] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[4] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 武向权, 滕家琛, 季祥旭, 郝禹博, 张忠明, 徐春杰. 织构化多孔Al2O3-SiO2复合陶瓷片-球混合浆料特性及光强分布仿真[J]. 无机材料学报, 2024, 39(7): 769-778. |
[7] | 王康龙, 殷杰, 陈晓, 王力, 刘学建, 黄政仁. 颗粒级配对选区激光烧结打印结合常压固相烧结制备碳化硅陶瓷性能的影响[J]. 无机材料学报, 2024, 39(7): 754-760. |
[8] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[9] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[10] | 刘焱, 覃显鹏, 甘霖, 周国红, 章天金, 王士维, 陈鹤拓. 亚微米球形Y2O3粉体及其透明陶瓷的制备[J]. 无机材料学报, 2024, 39(6): 691-696. |
[11] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[12] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[13] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[14] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[15] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||