[1] |
ZHANG X H, WANG Y M, CHENG Y, et al. Research progress on ultra-high temperature ceramic composites. Journal of Inorganic Materials, 2024, 39(6): 571.
|
[2] |
PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15(8): 804.
DOI
PMID
|
[3] |
XIAO P, ZHU Y L, WANG S, et al. Research progress on the preparation and characterization of ultra refractory TaxHf1-xC solid solution ceramics. Journal of Inorganic Materials, 2021, 36(7): 685.
|
[4] |
SMITH C J, YU X X, GUO Q Y, et al. Phase, hardness, and deformation slip behavior in mixed HfxTa1-xC. Acta Materialia, 2018, 145: 142.
|
[5] |
张健, 蒋进明, 周永刚, 等. TaxHf1-xC(x=0-1)超高温陶瓷材料的研究进展. 稀有金属材料与工程, 2022, 51(2): 752.
|
[6] |
PAN R Q, CHEN G Q, YU X M, et al. Densification, microstructure and mechanical properties of Ta4HfC5-based ceramics obtained from synthesized nanoscale powder. Journal of the European Ceramic Society, 2021, 41(4): 2247.
|
[7] |
QIN Y Y, NI D W, CHEN B W, et al. Low-temperature reactive hot-pressing of Ta0.2Hf0.8C-SiC ceramics at 1700 ℃. Journal of the American Ceramic Society, 2023, 106(7): 4390.
|
[8] |
NI D W, QIN Y Y, DONG S M. Microstructure and mechanical behavior of TaxHf1-xC-SiC fabricated by reactive hot-pressing: effect of Ta : Hf ratio. Journal of the American Ceramic Society, 2024, 107(10): 6974.
|
[9] |
ZOU X G, NI D W, CHEN B W, et al. Fabrication and mechanical behavior of 2D-Cf/TaxHf1-xC-SiC composites by a low-temperature and highly-efficient route. Journal of Advanced Ceramics, 2023, 12(10): 1961.
|
[10] |
ZOU X G, NI D W, CHEN B W, et al. Fabrication and properties of Cf/Ta4HfC5-SiC composite via precursor infiltration and pyrolysis. Journal of the American Ceramic Society, 2021, 104(12): 6601.
|
[11] |
ZHANG B H, WANG Y W, YIN J, et al. Carbon deficiency introduced plasticity of rock-salt-structured transition metal carbides. Journal of Materials Science & Technology, 2023, 164: 205.
|
[12] |
XIAO P, WANG S, LI W, et al. Novel strong and tough Ta/TaHfC2 composites with multi-scale laminated structure. Journal of the American Ceramic Society, 2022, 105(6): 4291.
|
[13] |
XIAO P, DAI H L, LI Z J, et al. Composition, microstructure, and mechanical properties evolution behaviors of Ta/TaHfC2 laminated composite between 1873-2673 K International Journal of Refractory Metals and Hard Materials, 2024, 121: 106642.
|
[14] |
ZHANG J, JIANG J M, SONG Q, et al. Ultra-high temperature ablation property of Ta0.5Hf0.5C ternary ceramic under plasma flame. Ceramics International, 2021, 47(19): 28050.
|
[15] |
ZHANG B H, YIN J, ZHENG J Q, et al. High temperature ablation behavior of pressureless sintered Ta0.8Hf0.2C-based ultra-high temperature ceramics. Journal of the European Ceramic Society, 2020, 40(4): 1784.
|
[16] |
VOITOVICH V B, LAVRENKO V A, ADEJEV V M, et al. High-temperature oxidation of tantalum of different purity. Oxidation of Metals, 1995, 43(5): 509.
|
[17] |
JIANG J M, WANG S, LI W. Preparation and characterization of ultrahigh-temperature ternary ceramics Ta4HfC5. Journal of the American Ceramic Society, 2016, 99(10): 3198.
|
[18] |
ZHANG J, WANG S, LI W. Consolidation and characterization of highly dense single-phase Ta-Hf-C solid solution ceramics. Journal of the American Ceramic Society, 2019, 102(1): 58.
|
[19] |
YIN J, ZHANG H B, XIONG X, et al. Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Applied Composite Materials, 2012, 19(3): 237.
|
[20] |
ZHANG W Z, TAN M Y, CHEN D M, et al. Sugar-derived nanocrystalline graphite matrix C/C composites with excellent ablative resistance at 3000 ℃. Advanced Materials, 2024, 36(7): 2309899.
|
[21] |
YAGHOBIZADEH O, SEDGHI A, BAHARVANDI H R. Effect of Ti3SiC2 on the ablation behavior and mechanism of Cf-C-SiC- Ti3SiC2 composites under oxyacetylene torch at 3000 ℃. Ceramics International, 2019, 45(1): 777.
|
[22] |
ZENG Y, XIONG X, LI G D, et al. Microstructure and ablation behavior of carbon/carbon composites infiltrated with Zr-Ti. Carbon, 2013, 54: 300.
|
[23] |
ZENG Y, WANG D N, XIONG X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 ℃. Nature Communications, 2017, 8: 15836.
|
[24] |
MCCORMACK S J, KRIVEN W. Crystal structure solution for the A6B2O17 (A=Zr, Hf; B=Nb, Ta) superstructure. Acta Crystallographica Section B-Structural Science, Crystal Engineering and Materials, 2019, 75: 227.
|
[25] |
YANG Y, KAWAZOE Y. Prediction of new ground-state crystal structure of Ta2O5. Physical Review Materials, 2018, 2(3): 034602.
|
[26] |
ZHANG J, WANG S, LI W, et al. Understanding the oxidation behavior of Ta-Hf-C ternary ceramics at high temperature. Corrosion Science, 2020, 164: 108348.
|
[27] |
肖鹏, 杨凯, 余艺平, 等. Ta/Ta0.5Hf0.5C层状复合材料的抗等离子火焰冲击行为及机制. 稀有金属材料与工程, 2024, 53(6): 1677.
|