无机材料学报 ›› 2025, Vol. 40 ›› Issue (7): 790-798.DOI: 10.15541/jim20240506

• 研究论文 • 上一篇    下一篇

耐高温层状Ta/Ta0.5Hf0.5C金属陶瓷的高频等离子体风洞烧蚀行为研究

余艺平1(), 肖鹏2, 赵长浩3, 徐梦迪1, 姚立冬1, 李伟1, 王松1()   

  1. 1.国防科技大学 空天科学学院, 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
    2.湖南云箭集团有限公司, 长沙 419500
    3.中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000
  • 收稿日期:2024-12-04 修回日期:2025-02-23 出版日期:2025-07-20 网络出版日期:2025-02-25
  • 通讯作者: 王松, 研究员. E-mail: wangs_0731@163.com
  • 作者简介:余艺平(1990-), 男, 博士. E-mail: beijingyuyiping@163.com
  • 基金资助:
    湖南省自然科学基金(2023JJ30634)

Ablation Behavior of High-temperature Laminated Ta/Ta0.5Hf0.5C Cermets under High-frequency Plasma Wind Tunnel Test

YU Yiping1(), XIAO Peng2, ZHAO Changhao3, XU Mengdi1, YAO Lidong1, LI Wei1, WANG Song1()   

  1. 1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
    2. Hunan Vanguard Group Co., Ltd., Changsha 419500, China
    3. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2024-12-04 Revised:2025-02-23 Published:2025-07-20 Online:2025-02-25
  • Contact: WANG Song, professor. E-mail: wangs_0731@163.com
  • About author:YU Yiping (1990-), male, PhD. E-mail: beijingyuyiping@163.com
  • Supported by:
    Natural Science Foundation of Hunan Province(2023JJ30634)

摘要:

层状Ta/Ta0.5Hf0.5C金属陶瓷具有耐高温、高强度及高韧性等特点, 是航空航天高温热结构领域的优良候选材料。为进一步明确层状Ta/Ta0.5Hf0.5C金属陶瓷在高温环境下的氧化烧蚀特性, 本研究采用高频等离子体风洞考核了其高温抗烧蚀性能, 并对其烧蚀前后的物相组成、微观结构进行了表征分析。研究结果表明层状Ta/Ta0.5Hf0.5C金属陶瓷具有良好的抗烧蚀性能, 在近3000 ℃空气等离子体烧蚀下, 其质量烧蚀率和线烧蚀率分别仅为0.061 g/s和0.019 mm/s。在烧蚀过程中, 由于Ta金属层和Ta0.5Hf0.5C陶瓷层的烧蚀速率、热膨胀系数不一致, 层状Ta/Ta0.5Hf0.5C金属陶瓷表面和内部分别出现沿层状结构方向的隆起-沟壑形貌和裂纹。其中, 隆起区域主要是Ta0.5Hf0.5C陶瓷层氧化生成的Hf6Ta2O17, 其能够在高温下稳定存在, 进而保护陶瓷层内部不被氧化; 沟壑区域则主要是Ta金属层氧化生成的Ta2O5, 其在高温下会发生熔化和挥发, 且在气流作用下会向烧蚀边缘溅射或流失, 因而展现出隆起-沟壑的表面形貌。而层状结构内部产生的裂纹主要是由于在烧蚀后的冷却过程中, 热膨胀系数差异使Ta0.5Hf0.5C陶瓷层受热应力作用, 但金属层与陶瓷层之间的Ta2C片状界面对裂纹起到了分支、偏转及萌生微裂纹等作用, 从而使材料整体上表现出良好的抗热震性能。

关键词: Ta/Ta0.5Hf0.5C金属陶瓷, 风洞, 烧蚀机理

Abstract:

Laminated Ta/Ta0.5Hf0.5C cermets, characterized by high strength, high toughness, and high-temperature resistance, are excellent candidate materials for structural applications in aerospace field. To further investigate ablation performance of Ta/Ta0.5Hf0.5C cermets under high-temperature environment, a high-frequency plasma wind tunnel was utilized to evaluate their ablation resistance at nearly 3000 ℃. Their phase composition and microstructure before and after ablation were characterized and analyzed. Results revealed that the laminated Ta/Ta0.5Hf0.5C cermets demonstrated remarkable ablation resistance, with a mass ablation rate of 0.061 g/s and a linear ablation rate of 0.019 mm/s. During the ablation process, distinctive ridge-groove surface morphologies and internal cracks were produced along the layered structure direction. These features were attributed to inconsistent ablation rates and thermal expansion coefficients of Ta metal layer and Ta0.5Hf0.5C ceramic layer. Specifically, the ridge region primarily consisted of Hf6Ta2O17 formed by oxidation of Ta0.5Hf0.5C ceramic layer. This compound could stably exist at high temperatures to protect the interior of ceramic layer from further oxidation. In contrast, the groove region primarily comprised Ta2O5, which was formed by oxidation of Ta metal layer. Yet Ta2O5 had a tendency to melt and vaporize at elevated temperatures, potentially leading to ejection or loss toward the ablation edge. The cracks formed within the layered structure during cooling process after ablation were mainly generated by thermal stress acting on the Ta0.5Hf0.5C ceramic layer due to differences in thermal expansion coefficients between the layers. Additionally, the Ta2C interfaces between metal and ceramic layers played a crucial role in branching, deflecting, and initiating micro-cracks, which endowed the material with good thermal shock resistance.

Key words: Ta/Ta0.5Hf0.5C cermet, wind tunnel, ablation mechanism

中图分类号: