[1] 邓湘云, 李建保, 王晓慧, 等. MLCC的发展趋势及在军用电子设备中的应用. 电子元件与材料, 2006(05): 1. [2] KISHI H, MIZUNO Y, CHAZONO H.Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives.Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 1): 1. [3] 朱文奕, 张树人, 周晓华, 等. 镍内电极多层陶瓷电容器介质材料的研究. 功能材料, 2000, 31(3): 292. [4] 杨邦朝, 冯哲圣, 卢云. 多层陶瓷电容器技术现状及未来发展趋势. 电子元件与材料, 2001, 20(6): 17. [5] 姚立真. 可靠性物理: 北京:电子工业出版社, 2004. [6] CHUN J, HEO J, LEE K, et al. Thermal activation energy on electrical degradation process in BaTiO3 based multilayer ceramic capacitors for lifetime reliability. Science Reports, 2024, 14: 616. [7] SADA T, FUJIKAWA N. Analysis of insulation resistance degradation in Ni-BaTiO3 multilayer ceramic capacitors under highly accelerated life test. Japanese Journal of Applied Physics, 2017, 56(10S): 10PB04. [8] ZHAO C, HUANG Y, WU J.Multifunctional barium titanate ceramicsvia chemical modification tuning phase structure. InfoMat, 2020, 2(6): 1163. [9] ZHANG Q, HE X, SHI [J], et al. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO2.5-σ. Nature Communications, 2017, 8: 104. [10] AN J S, LEE H S, BYEON P, et al. Unveiling of interstice-occupying dopant segregation at grain boundaries in perovskite oxide dielectrics for a new class of ceramic capacitors. Energy & Environmental Science, 2023, 16(5): 1992. [11] 王志焜. 用于电子显微镜中的X射线能谱仪. 电子显微学报, 1983, (3): 55. [12] 进藤大辅, 及川哲夫. 材料评价的分析电子显微方法. 北京: 冶金工业出版社, 2001. [13] 周玉, 武高辉. 材料分析测试技术:材料X射线衍射与电子显微分析. 哈尔滨: 哈尔滨工业大学出版社, 1998. [14] 王永瑞, 邹骐, 卢党吾. 电子能量损失谱学及其在材料科学中的应用. 物理, 1994, 23(6): 350. [15] 王乙潜, 杜庆田, 丁艳华, 等. 高分辨率电子能量损失谱在材料科学中的应用. 物理, 2010(12): 839. [16] KRIVANEK O L, DELLBY N, HACHTEL J A, et al. Progress in ultrahigh energy resolution EELS. Ultramicroscopy, 2019, 203: 60. [17] GLOTER A, DOUIRI A, TENCé M, COLLIEX C.Improving energy resolution of EELS spectra: an alternative to the monochromator solution.Ultramicroscopy, 2003, 96(3): 385. [18] LIN I C, HARUTA M, NEMOTO T, KURATA H.Isotropic behavior of oxygen vibrations in PbTiO3 investigated by Ti L2,3-edge electron energy-loss spectroscopy.Physical Review B, 2024, 110(3): 035109. [19] LEE S B, SIGLE W, RüHLE M. Investigation of grain boundaries in abnormal grain growth structure of TiO2-excess BaTiO3 by TEM and EELS analysis.Acta Materialia, 2002, 50(8): 2151. [20] SHAO Y, MAUNDERS C, ROSSOUW D, et al. Quantification of the Ti oxidation state in BaTi1-xNbxO3 compounds. Ultramicroscopy, 2010, 110(8): 1014. [21] YANG G Y, DICKEY E C, RANDALL C A, et al. Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part I—improvement of insulation resistance with reoxidation. Journal of Applied Physics, 2004, 96(12): 7492. [22] WANG P, HUANG X, LUAN S, et al. Exceptional dielectric performance of MLCCs enabled by defect-engineered BaTiO3. Journal of Materials Chemistry C, 2024, 12(33): 13131. [23] CHANG C-Y, WANG R-L, HUANG C-Y.Effects of Ba/Ti ratio on tetragonality, Curie temperature, and dielectric properties of solid-state-reacted BaTiO3 powder.Journal of Materials Research, 2012, 27(23): 2937. [24] BUGNET M, RADTKE G, WOO S Y, et al. Temperature-dependent high energy-resolution EELS of ferroelectric and paraelectric BaTiO3 phases. Physical Review B, 2016, 93(2):020102. [25] SAMANTARAY M M, KANEDA K, QU W, et al. Effect of firing rates on electrode morphology and electrical properties of multilayer ceramic capacitors. Journal of the American Ceramic Society, 2012, 95(3): 992. [26] YAN Z, GUILLON O, WANG S, et al. Synchrotron X-ray nano-tomography characterization of the sintering of multilayered systems. Applied Physics Letters, 2012, 100(26): 263107. |