无机材料学报 ›› 2022, Vol. 37 ›› Issue (2): 152-162.DOI: 10.15541/jim20210183 CSTR: 32189.14.10.15541/jim20210183
李高然, 李红阳, 曾海波
收稿日期:
2021-03-23
修回日期:
2021-05-07
出版日期:
2022-02-20
网络出版日期:
2021-05-25
作者简介:
李高然(1989-), 男, 教授. E-mail: gaoranli@njust.edu.cn
基金资助:
LI Gaoran, LI Hongyang, ZENG Haibo
Received:
2021-03-23
Revised:
2021-05-07
Published:
2022-02-20
Online:
2021-05-25
About author:
LI Gaoran (1989-), male, professor. E-mail: gaoranli@njust.edu.cn
Supported by:
摘要: 锂硫电池因其高能量密度和低成本等优势成为新一代电化学储能技术的重要发展方向。然而, 其较低的转换反应动力学和可逆性导致电池的实际容量、库仑效率和循环稳定性等仍难以满足实用化发展需求。对此, 合理设计和开发具有导电、吸附、催化特性的功能材料是稳定和促进硫电化学反应的关键途径。得益于硼独特的原子和电子结构, 硼基材料具有丰富且可调的物理、化学和电化学性质, 近年来在锂硫电池的研究中受到了广泛关注。本文综述了近期硼基材料, 包括硼烯、硼原子掺杂碳、金属硼化物和非金属硼化物在锂硫电池中的研究进展, 总结了存在的问题并展望了未来的发展方向。
中图分类号:
李高然, 李红阳, 曾海波. 硼基材料在锂硫电池中的研究进展[J]. 无机材料学报, 2022, 37(2): 152-162.
LI Gaoran, LI Hongyang, ZENG Haibo. Recent Progress of Boron-based Materials in Lithium-sulfur Battery[J]. Journal of Inorganic Materials, 2022, 37(2): 152-162.
[1] DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid: a battery of choices.Science, 2011, 334(6058): 928-935. [2] ARICO A S, BRUCE P, SCROSATI B, [3] LIANG Y R, ZHAO C Z, YUAN H, [4] GOODENOUGH J B, PARK K S.The Li-ion rechargeable battery: a perspective.Journal of the American Chemical Society, 2013, 135(4): 1167-1176. [5] TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries.Nature, 2011, 414: 171-179. [6] JIN G Y, HE H C, WU J, [7] FANG R, ZHAO S Y, SUN Z H, [8] HU J J, LI G R, GAO X P.Current status, problems and challenges in lithium-sulfur batteries.Journal of Inorganic Materials, 2013, 28(11): 1181-1186. [9] LI G R, WANG S, ZHANG Y N, [10] PENG H J, HUANG J Q, ZHANG Q.A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.Chemical Society Reviews, 2017, 46(17): 5237-5288. [11] JANA M, XU R, CHENG X B, [12] HE J R, MANTHIRAM A.A review on the status and challenges of electrocatalysts in lithium-sulfur batteries.Energy Storage Materials, 2019, 20: 55-70. [13] SEH Z W, SUN Y M, ZHANG Q F, [14] JI X L, EVERS S, BLACK R, [15] ZHANG Z, KONG L L, LIU S, [16] XU W C, PAN X X, MENG X, [17] LIU Y T, LIU S, LI G R, [18] CHEN H H, XIAO Y W, CHEN C, [19] YOO J, CHO S J, JUNG G Y, [20] HU Y, LIU C.Introduction of 1,2-migration for organoboron compounds.University Chemistry, 2019, 34(12): 39-44. [21] SOREN K M, SUNING W.Boron-based stimuli responsive materials.Chemical Society Reviews, 2019, 48(13): 3537-3549. [22] HUANG Z G, WANG S N, DEWHURST R D, [23] ZHU Y H, GAO S M, HOSMANE N S.Boron-enriched advanced energy materials.Inorganica Chimica Acta, 2017, 471: 577-586. [24] KHAN K, TAREEN A K, ASLAM M, [25] RAO D W, LIU X J, YANG H, [26] JIANG H R, SHYY W, LIU M, [27] ZHANG C Y, HE Q, CHU W, [28] ZHANG L, LIANG P, SHU H B, [29] GRIXTI S, MUKHERJEE S, SINGH C V.Two-dimensional boron as an impressive lithium-sulphur battery cathode material.Energy Storage Materials, 2018, 13: 80-87. [30] MANNIX A J, ZHOU X F, KIRALY B, [31] FENG B J, ZHANG J, ZHONG Q, [32] PARAKNOWITSCH J P, THOMAS A.Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications.Energy & Environmental Science, 2013, 6(10): 2839-2855. [33] WANG H B, MAIYALAGAN T, WANG X.Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications.ACS Catalysis, 2012, 2(5): 781-794. [34] XIE Y, MENG Z, CAI T W, [35] SHI P C, WANG Y, LIANG X, [36] YANG L J, JIANG S J, ZHAO Y, [37] AI W, LI J W, DU Z Z, [38] YANG C P, YIN Y X, YE H, [39] XU C X, ZHOU H H, FU C P, [40] HAN P, MANTHIRAM A.Boron- and nitrogen-doped reduced graphene oxide coated separators for high-performance Li-S batteries.Journal of Power Sources, 2017, 369: 87-94. [41] HOU T Z, CHEN X, PENG H J, [42] XIONG D G, ZHANG Z, HUANG X Y, [43] YUAN S Y, BAO J L, WANG L N, [44] CHEN L, FENG J R, ZHOU H H, [45] JIN C B, ZHANG W K, ZHUANG Z Z, [46] ULLAH S, DENIS P A, SATO F.Unusual enhancement of the adsorption energies of sodium and potassium in sulfur-nitrogen and silicon-boron codoped graphene.ACS Omega, 2018, 3(11): 15821-15828. [47] ZHANG Z, XIONG D G, SHAO A H, [48] WANG P, KUMAR R, SANKARAN E M, [49] HE G J, LING M, HAN X Y, [50] WANG C C, AKBAR S A, CHEN W, [51] XIAO Z B, YANG Z, ZHANG L J, [52] WANG L J, LIU F H, ZHAO B Y, [53] BALACH J, LINNEMANN J, JAUMANN T, [54] BEN-DOR L, SHIMONY Y.Crystal structure, magnetic susceptibility and electrical conductivity of pure and NiO-doped MoO2 and WO2.Materials Research Bulletin, 1974, 9(6): 837-44. [55] SAMSONOV G.难熔化合物手册. 北京: 中国工业出版社, 1965: 1-147. [56] FENG L S, QUN C X, LIN M Y, [57] TAO Q, MA S L, CUI T, [58] SHEN Y F, XU C, HUANG M, [59] GUPTA S, PATEL M K, MIOTELLO A, [60] WU F, WU C.New secondary batteries and their key materials based on the concept of multi-electron reaction.Chinese Science Bulletin, 2014, 59(27): 3369-3376. [61] GUAN B, FAN L S, WU X, [62] GUAN B, ZHANG Y, FAN L S, [63] GUAN B, SUN X, ZHANG Y, [64] BASU B, RAJU GSURI A.Processing and properties of monolithic TiB2 based materials.International Materials Reviews, 2006, 51(6): 352-374. [65] LI C C, LIU X B, ZHU L, [66] LI Z J, JIANG H R, LAI N C, [67] JIN L M, NI J, SHEN C, [68] WU R, XU H K, ZHAO Y W, [69] HE J R, BHARGAV A, MANTHIRAM A.Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy- density lithium-sulfur batteries.Advanced Materials, 2020, 32(40): 2004741. [70] PANG Q, KWOK C Y, KUNDU D, [71] YU T T, GAO P F, ZHANG Y, [72] JANA S, THOMAS S, LEE C H, [73] SUN C, HAI C X, ZHOU Y, [74] ARENAL R, LOPEZ BEZANILLA A.Boron nitride materials: an overview from 0D to 3D (nano)structures.Wiley Interdisciplinary Reviews-Computational Molecular Science, 2015, 5(4): 299-309. [75] JIANG X F, WENG Q H, WANG X B, [76] PRAKASH A, NEHATE S D, SUNDARAM K B.Boron carbon nitride based metal-insulator-metal UV detectors for harsh environment applications.Optics Letters, 2016, 41(18): 4249-4252. [77] ZHAO Y M, YANG L, ZHAO J X, [78] YI Y K, LI H P, CHANG H H, [79] HE B, LI W C, ZHANG Y, [80] DENG D R, BAI C D, XUE F, [81] SUN K, GUO P Q, SHANG X N, [82] FAN Y, YANG Z, HUA W X, [83] KIM P J H, SEO J, FU K, [84] PRAMANICK A, DEY P P, DAS P K.Microstructure, phase and electrical conductivity analyses of spark plasma sintered boron carbide machined with WEDM.Ceramics International, 2020, 46(3): 2887-2894. [85] YEGANEH M, SARAF H H, KAFI F, [86] CHANG Y K, SUN X H, MA M D, [87] LUO L, CHUNG S H, ASL H Y, [88] SONG N N, GAO Z, ZHANG Y Y, [89] ZHANG R H, CHI C, WU M C, |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[3] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[4] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[5] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[6] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[7] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[8] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[9] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[10] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[11] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[12] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[13] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[14] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[15] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||