无机材料学报 ›› 2021, Vol. 36 ›› Issue (6): 659-664.DOI: 10.15541/jim20200357 CSTR: 32189.14.10.15541/jim20200357
范君1(), 江雪2, 焦毅2(
), 陈宇圣1, 王健礼1(
), 陈耀强1,2
收稿日期:
2020-06-29
修回日期:
2020-09-17
出版日期:
2021-06-20
网络出版日期:
2020-10-10
通讯作者:
焦 毅, 教授. E-mail: jiaoyiscu@163.com; 王健礼, 教授. E-mail: wangjianli@scu.edu.cn
作者简介:
范 君(1996-), 女, 硕士研究生. E-mail: fj960117@163.com
FAN Jun1(), JIANG Xue2, JIAO Yi2(
), CHEN Yusheng1, WANG Jianli1(
), CHEN Yaoqiang1,2
Received:
2020-06-29
Revised:
2020-09-17
Published:
2021-06-20
Online:
2020-10-10
Contact:
JIAO Yi, professor. E-mail: jiaoyiscu@163.com; WANG Jianli, professor. E-mail: wangjianli@scu.edu.cn
About author:
FAN Jun (1996-), female, Master candidate. E-mail: fj960117@163.com
Supported by:
摘要:
老化处理会导致三效催化剂(TWCs)严重失活, 因此提高催化剂的耐久性能是TWCs设计的目标。本工作采用不同碱辅助的沉积沉淀法, 即尿素辅助沉积沉淀法和氨水辅助沉积沉淀法制备了Pt/Ce0.4Zr0.5La0.05Pr0.05O2 (Pt/CZ)三效催化剂, 分析了不同碱对催化剂物理化学性质、催化活性和耐久性的影响。结果表明, 尿素辅助沉积沉淀法(UDP)制备的Pt/CZ催化剂的抗老化性能较差, 而氨水辅助沉积沉淀法(ADP)制备的催化剂的抗老化能力较强。XRD, CO 吸附, XPS和H2-TPR表征结果表明, ADP中较大的Pt颗粒以及更强的金属载体相互作用使ADP在老化过程中烧结程度较低, 有利于维持催化活性。因此, ADP催化剂具有一定的工业应用前景。
中图分类号:
范君, 江雪, 焦毅, 陈宇圣, 王健礼, 陈耀强. 不同碱辅助的沉积沉淀法对三效催化剂稳定性的影响[J]. 无机材料学报, 2021, 36(6): 659-664.
FAN Jun, JIANG Xue, JIAO Yi, CHEN Yusheng, WANG Jianli, CHEN Yaoqiang. Effect of Different Alkali-assisted Deposition Precipitation Methods on the Durability of Three-way Catalysts[J]. Journal of Inorganic Materials, 2021, 36(6): 659-664.
Samples | Surface area/ (m2•g-1) | Pore volume/ (mL•g-1) | Average pore radius/nm |
---|---|---|---|
IM | 60 | 0.23 | 7.5 |
UDP | 63 | 0.22 | 7.5 |
ADP | 61 | 0.23 | 7.7 |
IM-a | 49 | 0.24 | 9.4 |
UDP-a | 50 | 0.22 | 7.6 |
ADP-a | 53 | 0.25 | 7.7 |
CZLP | 64 | 0.25 | 8.7 |
Table 1 Textural and structural parameters of the support and samples
Samples | Surface area/ (m2•g-1) | Pore volume/ (mL•g-1) | Average pore radius/nm |
---|---|---|---|
IM | 60 | 0.23 | 7.5 |
UDP | 63 | 0.22 | 7.5 |
ADP | 61 | 0.23 | 7.7 |
IM-a | 49 | 0.24 | 9.4 |
UDP-a | 50 | 0.22 | 7.6 |
ADP-a | 53 | 0.25 | 7.7 |
CZLP | 64 | 0.25 | 8.7 |
Fig. 1 XRD patterns of fresh and aged samples (a) and the comparison of their relative intensities of Pt (111) based on the strongest peak of support (b)
Sample | Pt0/Pt ratio | Pt2+/Pt ratio | Pt4+/Pt ratio | Oads/O ratio | Ce3+/Ce ratio |
---|---|---|---|---|---|
IM | 0 | 0.871 | 0.129 | 0.354 | 0.217 |
UDP | 0 | 0.851 | 0.149 | 0.374 | 0.240 |
ADP | 0 | 0.831 | 0.169 | 0.324 | 0.201 |
IM-a | 0.302 | 0.698 | 0 | 0.329 | 0.195 |
UDP-a | 0.421 | 0.579 | 0 | 0.350 | 0.187 |
ADP-a | 0.234 | 0.766 | 0 | 0.336 | 0.214 |
Table 2 Surface elemental state ratio derived from by XPS
Sample | Pt0/Pt ratio | Pt2+/Pt ratio | Pt4+/Pt ratio | Oads/O ratio | Ce3+/Ce ratio |
---|---|---|---|---|---|
IM | 0 | 0.871 | 0.129 | 0.354 | 0.217 |
UDP | 0 | 0.851 | 0.149 | 0.374 | 0.240 |
ADP | 0 | 0.831 | 0.169 | 0.324 | 0.201 |
IM-a | 0.302 | 0.698 | 0 | 0.329 | 0.195 |
UDP-a | 0.421 | 0.579 | 0 | 0.350 | 0.187 |
ADP-a | 0.234 | 0.766 | 0 | 0.336 | 0.214 |
Sample | CO | NO | C3H8 | C3H6 | ||||
---|---|---|---|---|---|---|---|---|
T50/℃ | ΔT /℃ | T50/℃ | ΔT/℃ | T50/℃ | ΔT/℃ | T50/℃ | ΔT/℃ | |
IM | 174 | - | 260 | - | 269 | - | 234 | - |
UDP | 142 | - | 259 | - | 273 | - | 228 | - |
ADP | 187 | - | 277 | - | 284 | - | 254 | - |
IM-a | 215 | 41 | 304 | 44 | 312 | 43 | 278 | 44 |
UDP-a | 229 | 87 | 313 | 54 | 328 | 55 | 287 | 59 |
ADP-a | 203 | 16 | 294 | 17 | 306 | 22 | 272 | 18 |
Table 3 Light-off (T50) temperature and ΔT for three-way catalytic reactions over catalysts
Sample | CO | NO | C3H8 | C3H6 | ||||
---|---|---|---|---|---|---|---|---|
T50/℃ | ΔT /℃ | T50/℃ | ΔT/℃ | T50/℃ | ΔT/℃ | T50/℃ | ΔT/℃ | |
IM | 174 | - | 260 | - | 269 | - | 234 | - |
UDP | 142 | - | 259 | - | 273 | - | 228 | - |
ADP | 187 | - | 277 | - | 284 | - | 254 | - |
IM-a | 215 | 41 | 304 | 44 | 312 | 43 | 278 | 44 |
UDP-a | 229 | 87 | 313 | 54 | 328 | 55 | 287 | 59 |
ADP-a | 203 | 16 | 294 | 17 | 306 | 22 | 272 | 18 |
[1] |
LI G F, WANG Q Y, ZHAO B, et al. A new insight into the role of transition metals doping with CeO2-ZrO2 and its application in Pd-only three-way catalysts for automotive emission control. Fuel, 2012,92:360-368.
DOI URL |
[2] |
HANEDA M, SHINODA K, NAGANE A, et al. Catalytic performance of rhodium supported on ceria-zirconia mixed oxides for reduction of NO by propene. Journal of Catalysis, 2008,259:223-231.
DOI URL |
[3] |
NAGAI Y, HIRABAYASHI T, DOHMAE K, et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. Journal of Catalysis, 2006,242:103-109.
DOI URL |
[4] |
ZHAN Z C, LIU X J, HE H, et al. Fabrication of a flower-like Pd/CeO2 material with improved three-way catalytic performance. Journal of Rare Earths, 2013,31:750-758.
DOI URL |
[5] |
FERNANDESA D M, SCOFIELDA C F, NETO A A, et al. Thermal deactivation of Pt/Rh commercial automotive catalysts. Chemical Engineering Journal, 2010,160:85-92.
DOI URL |
[6] |
ESCHEMANN T O, BITTER J H, JONG K P. Effect of thermal ageing on the structure and catalytic activity of Pd/CeO2 prepared using arc-plasma process. Catalysis Science Technology, 2014,4:2990-2996.
DOI URL |
[7] |
YOON D Y, KIM Y J, LIM J H, et al. Thermal stability of Pd-containing LaAlO3 perovskite as a modern TWC. Journal of Catalysis, 2015,330:71-83.
DOI URL |
[8] |
TANABE T, NAGAI Y, DOHMAE K, et al. Sintering and redispersion behavior of Pt on Pt/MgO. Journal of Catalysis, 2008,257:117-124.
DOI URL |
[9] |
WANG J H, CHEN H, HU Z C, et al. A review on the Pd-based three-way catalyst. Catalysis Reviews, 2014,57:79-144.
DOI URL |
[10] |
HE J J, WANG H X, ZHENG T T, et al. Thermally induced deactivation and the corresponding strategies for improving durability in automotive three-way catalysts. Johnson Matthey Technology Review, 2016,60:196-203.
DOI URL |
[11] |
LI H M, LAN L, CHEN S H, et al. Preparation of CexZr1-xO2 with combined composition for improved Pd-only three-way catalyst. Journal of Inorganic Materials, 2018,33(7):798-804.
DOI URL |
[12] |
WU Q F, CUI Y J, ZHANG H L, et al. Preparation of ceria-zirconia mixed oxides with improved thermal stability for three-way catalysts by a modified co-precipitation method. Journal of Inorganic Materials, 2017,32(3):331-336.
DOI URL |
[13] |
FAN J, CHEN Y S, JIANG X, et al. A simple and effective method to synthesize Pt/CeO2 three-way catalysts with high activity and hydrothermal stability. Journal of Environmental Chemical Engineering, 2020,8:104236-104243.
DOI URL |
[14] |
MUNNIK P, JONGH P E, JONG K P. Recent developments in the synthesis of supported catalysts. Chemical Reviews, 2015,115:6687-6718.
DOI URL |
[15] |
ESCHEMANN T O, BITTER J H, JONG K P. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer-Tropsch synthesis. Catalysis Today, 2014,228:89-95.
DOI URL |
[16] |
MOREAU F, BOND G C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide. Applied Catalysis A: General, 2006,302:110-117.
DOI URL |
[17] |
PACELLA M, GARBUJO A, FABRO J, et al. PGM-free CuO/LaCoO3 nanocomposites: new opportunities for TWC application. Applied Catalysis B: Environmental, 2018,227:446-458.
DOI URL |
[18] |
CHENG T Q, WANG J L, WANG S N, et al. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst. Applied Surface Science, 2017,426:745-754.
DOI URL |
[19] |
BAZIN P, SAUR O, LAVALLEY J C, et al. FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles. Physical Chemistry Chemical Physics, 2005,7:187-194.
DOI URL |
[20] |
SHEN M Q, LÜ L F, WANG J Q, et al. Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction. Chemical Engineering Journal, 2014,255:40-48.
DOI URL |
[21] |
FAN J, WU X D, YANG L, et al. The SMSI between supported platinum and CeO2-ZrO2-La2O3 mixed oxides in oxidative atmosphere. Catalysis Today, 2007,126:303-312.
DOI URL |
[22] |
PENG R S, LI S J, SUN X B, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018,220:462-470.
DOI URL |
[23] |
FAN J, WU X D, WU X D, et al. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: effect on the OSC performance. Applied Catalysis B: Environmental, 2008,81:38-48.
DOI URL |
[24] |
WU X D, FAN J, RAN R, et al. Effect of preparation methods on the structure and redox behavior of platinum-ceria-zirconia catalysts. Chemical Engineering Journal, 2005,109:133-139.
DOI URL |
[25] |
ZHANG H L, WANG J L, ZHANG Y H, et al. A study on H2-TPR of Pt/Ce0.27Zr0.73O2 and Pt/Ce0.27Zr0.70La0.03Ox for soot oxidation. Applied Surface Science, 2016,377:48-55.
DOI URL |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[3] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. |
[4] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[5] | 杨博, 吕功煊, 马建泰. 镍铁氢氧化物-磷化钴复合电极电催化分解水研究[J]. 无机材料学报, 2024, 39(4): 374-382. |
[6] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[7] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[8] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[9] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[10] | 胡忠良, 傅赟天, 蒋蒙, 王连军, 江莞. Nb/Mg3SbBi界面层热稳定性研究[J]. 无机材料学报, 2023, 38(8): 931-937. |
[11] | 刘建, 王凌坤, 许保亮, 赵倩, 王耀萱, 丁艺, 张胜泰, 段涛. 熔盐法低温合成掺钕ZrSiO4陶瓷的物相演变和化学稳定性[J]. 无机材料学报, 2023, 38(8): 910-916. |
[12] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[13] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[14] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[15] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||