无机材料学报 ›› 2020, Vol. 35 ›› Issue (9): 1053-1058.DOI: 10.15541/jim20190573 CSTR: 32189.14.10.15541/jim20190573
王东海1(),侯文涛1,李纳1,李东振2,徐晓东2,徐军1(
),王庆国1(
),唐慧丽1
收稿日期:
2019-11-11
修回日期:
2019-12-25
出版日期:
2020-09-20
网络出版日期:
2020-04-05
作者简介:
王东海(1982–), 男, 博士研究生. E-mail:
WANG Donghai1(),HOU Wentao1,LI Na1,LI Dongzhen2,XU Xiaodong2,XU Jun1(
),WANG Qingguo1(
),TANG Huili1
Received:
2019-11-11
Revised:
2019-12-25
Published:
2020-09-20
Online:
2020-04-05
摘要:
通过导模法(EFG)成功生长了蓝宝石单晶光纤(直径400~1000 μm, 长度500 mm)。光纤的横截面大致为圆形, 侧面无明显的小面, 直径变化小于40 μm。本研究对晶体缺陷, 例如微气泡, 包裹物和生长条纹等进行观察与分析, 得出: 大多数微气泡是球状的, 且存在于光纤的外侧缘; 在蓝宝石光纤外侧面也观察到少量的钼包裹物元素; 新模具在前几次使用中往往会产生更多的钼夹杂物, 在多次使用后降低。通过对熔体膜流体流动的实验和数值模拟, 研究蓝宝石光纤中微气泡尺寸和分布, 实验和数值模拟的结果显示出良好的一致性。微气泡的分布取决于熔体膜处的流体流动模式, 流体流动的涡流使微气泡在热毛细对流作用下移动到蓝宝石光纤外侧缘。633 nm处的吸收损耗为9 dB/m, 包裹物和表面不规则性会增加散射损耗。
中图分类号:
王东海,侯文涛,李纳,李东振,徐晓东,徐军,王庆国,唐慧丽. 导模法生长蓝宝石单晶光纤的缺陷和光学特性研究[J]. 无机材料学报, 2020, 35(9): 1053-1058.
WANG Donghai,HOU Wentao,LI Na,LI Dongzhen,XU Xiaodong,XU Jun,WANG Qingguo,TANG Huili. Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053-1058.
Fig. 6 Principles of capillary shaping for EFG fiber growth method Rm-Vertical curvature of the meniscus; Rd-Die radius; Rc-Radius of the crystal; Hm-Meniscus height
Materials | Orientation | φo /(o) | Ref. |
---|---|---|---|
Si | [111] | 11 | [10] |
YAG | [100] | 11 | [11] |
Sapphire | [0001] | 17 | [12] |
Sapphire | $[10\bar{1}0]$ | 35 | [12] |
Table 1 Parameter φo for different crystals
Materials | Orientation | φo /(o) | Ref. |
---|---|---|---|
Si | [111] | 11 | [10] |
YAG | [100] | 11 | [11] |
Sapphire | [0001] | 17 | [12] |
Sapphire | $[10\bar{1}0]$ | 35 | [12] |
[1] |
LABELLE JR H E. EFG, the invention and application to sapphire growth. Journal of Crystal Growth, 1980,50(1):8-17.
DOI URL |
[2] | WILSON B A, PETRIE C M, BLUE T E. High temperature effects on the light transmission through sapphire optical fiber. Journal of the American Ceramic Society, 2018,101(8):3452-3459. |
[3] |
COULTER A H. Sapphire fibers for erbium: YAG continue to evolve. Journal of Clinical Laser Medicine and Surgery, 1995,13(3):227-228.
URL PMID |
[4] | KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique. Journal of Physics: Conference Series, 2016,673(1):012017. |
[5] | BERA S, NIE C D, SOSKIND M G,et al. Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations. Optical Materials, 2018,75:44-48. |
[6] | LEBBOU K. Single crystals fiber technology design. Optical Materials, 2017,63:13-18. |
[7] | KURLOV V N, MILEIKO S T, KOLCHIN A A,et al. Growth of oxide fibers by the internal crystallization method. Crystallography Reports, 2002,47(1):S53-S62. |
[8] | KURLOV V N, KIIKO V M, KOLCHIN A A,et al. Sapphire fibres grown by a modified internal crystallisation method Journal of Crystal Growth, 1999,204(4):499-504. |
[9] | FITZGIBBON J J, COLLINS J M. High-volume production of low-loss sapphire optical fibers by Saphikon EFG (edge-defined, film-fed growth) method. International Society for Optics and Photonics, 1998,3262:135-141. |
[10] |
SUREK T. Theory of shape stability in crystal growth from the melt. Journal of Applied Physics, 1976,47(10):4384-4393.
DOI URL |
[11] | RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt. crystal research and technology. Journal of Experimental and Industrial Crystallography, 1999,34(1):3-40. |
[12] | KAMADA K, MURAKAMI R, KOCHURIKHIN V V,et al. Single crystal growth of submillimeter diameter sapphire tube by the micro- pulling down method. Journal of Crystal Growth, 2018,492:45-49. |
[13] | ZHDANOV A V, SATUNKIN G A, TATARCHENKO V A,et al. Cylindrical pores in a growing crystal. Journal of Crystal Growth, 1980,49(4):659-664. |
[14] | TATARCHENKO V A, YALOVETS T N, SATUNKIN G A,et al. Defects in shaped sapphire crystals. Journal of Crystal Growth, 1980,50(1):335-340. |
[15] | BUNOIU O, NICOARA I, SANTAILLER J L,et al. Fluid flow and solute segregation in EFG crystal growth process. Journal of Crystal Growth, 2005,275(1/2):e799-e805. |
[16] |
NUBLING R K, HARRINGTON J A. Optical properties of single- crystal sapphire fibers. Applied Optics, 1997,36(24):5934-5940.
URL PMID |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[7] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[8] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[9] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[10] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[13] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||