无机材料学报 ›› 2020, Vol. 35 ›› Issue (8): 857-866.DOI: 10.15541/jim20190492 CSTR: 32189.14.10.15541/jim20190492
所属专题: 功能材料论文精选(2020)
收稿日期:
2019-09-25
修回日期:
2019-11-12
出版日期:
2020-08-20
网络出版日期:
2020-01-20
作者简介:
陈 云(1990-), 女, 博士研究生. E-mail:<email>xiaoyun369@126.com</email><br/>CHEN Yun(1990-), female, PhD candidate. E-mail: <email>xiaoyun369@126.com</email>
基金资助:
CHEN Yun(),WANG Xusheng(
),LI Yanxia,YAO Xi
Received:
2019-09-25
Revised:
2019-11-12
Published:
2020-08-20
Online:
2020-01-20
Supported by:
摘要:
动态热机械分析仪(DMA)具有高灵敏度、卓越制冷技术、自由旋转测试头、多种形变模式和连续频率温度扫描模式等优点, 能表征材料在交变应力(或应变)作用下的应变(或应力)的响应、蠕变、应力松弛和热机械性能等, 广泛应用于塑料、热固性材料、复合材料、高弹性体、涂层材料、金属和陶瓷等材料的研究和评估。本文简要介绍了DMA进行动态力学行为分析的基本原理和方法, DMA在铁电相变、低频弛豫特性和铁电疲劳研究方面的应用, 以及DMA在铁电/聚合物复合阻尼材料研究中的应用。在对PZT陶瓷和单晶、BaTiO3陶瓷等常用材料的铁电弛豫特性分析中, DMA表现出比介电表征更为敏感的特性。现在DMA已成为研究铁电材料的重要工具之一。
中图分类号:
陈云, 王旭升, 李艳霞, 姚熹. 动态热机械分析仪(DMA)在铁电压电材料研究中的应用[J]. 无机材料学报, 2020, 35(8): 857-866.
CHEN Yun, WANG Xusheng, LI Yanxia, YAO Xi. Dynamic Mechanical Analysis in the Investigation on Ferroelectrics[J]. Journal of Inorganic Materials, 2020, 35(8): 857-866.
图6 PbZrO3单晶沿着[110]c方向模量的实部(a)和虚部(b)与温度和频率的关系[31]
Fig. 6 Dependence of modulus on temperature and frequency of PbZrO3 single crystal from [110]c direction (a) Real part of modulus; (b) Imaginary part of modulus[31]
图10 BTWC陶瓷的S-N曲线[42,43]
Fig. 10 The S-N curves of BTWC ceramics[42,43] (a) BTWC ceramics sintered at different temperatures; (b) Unpoled and poled BTWC ceramics sintered at 1150 ℃
图11 1-3型PZT/环氧树脂的动态力学性能(a~b)和0-3型ZnOw/环氧树脂动态力学性能(c~d)[49]
Fig. 11 Dynamic mechanical properties of 1-3 type PZT/epoxy resin composite (a-b) and dynamic mechanical properties of 0-3 type ZnOw/epoxy resin composite (c-d)[49]
CB/wt% | Tg/℃ | tanδmax | TA | ΔT/℃(tanδ>0.3) |
---|---|---|---|---|
0 | 85.86 | 0.405 | 18.21 | 20.28 |
2 | 96.73 | 0.442 | 19.27 | 22.81 |
4 | 100.26 | 0.429 | 18.73 | 20.86 |
6 | 88.76 | 0.480 | 20.80 | 24.26 |
8 | 93.40 | 0.439 | 19.64 | 21.23 |
表1 CB含量和0-3型PMN/CB/EP压电复合材料阻尼性能的关系[50]
Table 1 The relationship between CB content and the properties of 0-3 type PMN/CB/EP ferroelectric composite damping[50]
CB/wt% | Tg/℃ | tanδmax | TA | ΔT/℃(tanδ>0.3) |
---|---|---|---|---|
0 | 85.86 | 0.405 | 18.21 | 20.28 |
2 | 96.73 | 0.442 | 19.27 | 22.81 |
4 | 100.26 | 0.429 | 18.73 | 20.86 |
6 | 88.76 | 0.480 | 20.80 | 24.26 |
8 | 93.40 | 0.439 | 19.64 | 21.23 |
图12 PZT颗粒粒径和电学边界对压电复合材料的影响 (a)PZT颗粒粒径对0-3型压电复合材料阻尼性能的影响; (b)PZT颗粒粒径对0-3型压电复合材料储能模量的影响; (c-d)不同电学边界对1-3型PZT压电复合材料阻尼性能的影响[51]
Fig. 12 Influence of grain size and electrical boundary on piezoelectric composite (a) Influence of PZT grain size on the loss factor of 0-3 type piezoelectric composites; (b) Influence of PZT grain size on the modulus of 0-3 type piezoelectric composites; (c-d) Influence of different electrical boundary conditions on the dynamic mechanical properties of 1-3 type piezoelectric composites[51]
[1] |
DOMENJOUD M, BERTHELOT E, GALOPIN N, et al. Characterization of giant magnetostrictive materials under static stress: influence of loading boundary conditions. Smart Mater. Struct., 2019,28:095012.
DOI URL |
[2] |
LIU N, ACOSTA M, WANG S, et al. Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3- 0.25SrTiO3. Sci. Rep., 2016,6:36910.
DOI URL PMID |
[3] |
LIU X, TAN X, Giant strains in non-textured (Bi1/2Na1/2)TiO3- based lead-free ceramics. Adv. Mater., 2016,283:574-578.
DOI URL PMID |
[4] |
LI T, LOU X, KE X, et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5) TiO3-based lead-free piezoceramics. Acta Mater., 2017,12815:337-344.
DOI URL |
[5] |
LESTER B T, BAXEVANIS T, CHEMISKY Y, et al. Review and perspectives: shape memory alloy composite systems. Acta Mech., 2015,22612:3907-3960.
DOI URL |
[6] |
NARITA F, FOX M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater., 2018,20:1700743.
DOI URL |
[7] |
WEBBER K G, VOEGLER M, KHANSUR N H, et al. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater. Struct., 2017,266:063001.
DOI URL |
[8] | SADEGHPOUR S, MEYERS S, KRUTH J P, et al. Single-element omnidirectional piezoelectric ultrasound transducer for under water communication. Proceedings, 2017,1:363. |
[9] |
MA H K, LUO W F, LIN J Y. Development of a piezoelectric micropump with novel separable design for medical applications. Sensor Actuat. A Phys., 2015,236:57-66.
DOI URL |
[10] |
ZHOU M, LIANG R, ZHOU Z, et al. Potentiality of Bi and Mn co-doped lead-free NaNbO3 ceramics as a pyroelectric material for uncooled infrared thermal detectors. J. Eur. Ceram. Soc., 2019,396:2058-2063.
DOI URL |
[11] |
CROSS L E. Relaxor ferroelectric. Ferroelectrics, 1987,761:241-267.
DOI URL |
[12] |
STEEVES J B, GOLINVEAUX F S. Using the ferroelectric/ ferroelastic effect at cryogenic temperatures for set-and-hold actuation. Smart Mater. Struct., 2018,276:065024.
DOI URL |
[13] |
KWEON S Y, LEE K, PARK Y, et al. Low-temperature sintering of (1-x)Pb(Zr0.53Ti0.47)O3-xBiYO3 ceramics with nano-powder for piezo-speaker. Jpn. J. Appl. Phys., 2019,585:051008.
DOI URL |
[14] | MARAKAKIS K, TAIRIDIS G K, KOUTSIANITIS P. Shunt piezoelectric systems for noise and vibration control: a review. Fron. Built Environ., 2019,5:64. |
[15] |
GRIPP J A B, RADE D A. Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal PR., 2018,112:359-383.
DOI URL |
[16] | XU Z, CHEN Z, HUNAG X, et al. Recent advances in multi- dimensional vibration mitigation materials and devices. Fron. Mater., 2019,6:00143. |
[17] | POYNTING J H. On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proceedings of the Royal Society of London. Series A, 1909,82557:546-559. |
[18] | GUO L M. The advanced dynamic mechanical thermal analysis (DMTA) and its applications. Modern Scientific Instrumentation, 1997,4:57-60. |
[19] | LI Z, SUN D, YAN B, et al. Fractional order model of viscoelastic suspension for crawler vehicle and its vibration suppression analysis. Transactions of the Chinese Society of Agricultural Engineering, 2015,317:72-79. |
[20] | 过梅丽. 高聚物与复合材料的动态力学热分析. 北京: 化学工业出版社, 2002. |
[21] | 张良莹. 电介质物理. 西安: 西安交通大学出版社, 1991. |
[22] | MENARD H P. Dynamic Mechanical Analysis. Florida: CRC Press, 2008. |
[23] |
YAN F, BAO P, WANG Y. Phase transition in relaxor ferroelectrics studied by mechanical measurements. Appl. Phys. Lett., 2003,8321:4384-4386.
DOI URL |
[24] |
CORDERO F. Hopping and clustering of oxygen vacancies in SrTiO3 by anelastic relaxation. Phys. Rev. B, 2007,7617:172106.
DOI URL |
[25] |
DIAZ J C C A, VENET M, CORDERO F, et al. Anelastic and optical properties of Bi0.5Na0.5TiO3 and (Bi0.5Na0.5)0.94Ba0.06TiO3 lead- free ceramic systems doped with donor Sm 3+. J. Alloy. Compd., 2018,74625:648-652.
DOI URL |
[26] |
ALGUERÓ M, JIMÉNEZ H, AMORÍN, et al. Low temperature phenomena in ferroic BiMO3-PbTiO3(M: Mn and Sc). Appl. Phys. Lett., 2011,9820:202904.
DOI URL |
[27] |
ZHANG D, YAO Y, FANG M, et al. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x) Bi0.5Na0.5TiO3-xBaTiO3 system. Acta Mater., 2016,103:746-753.
DOI URL |
[28] |
ZHANG L, REN X, CARPENTER M A. Influence of local strain heterogeneity on high piezoelectricity in 0.5Ba(Zr0.2Ti0.8)O3- 0.5(Ba0.7Ca0.3)TiO3 ceramics. Phys. Rev. B, 2017,955:054116.
DOI URL |
[29] |
SILVA P, DIAZ J, FLORÉNCIO, et al. Analysis of the phase transitions in BNT-BT lead-free ceramics around morphotropic phase boundary by mechanical and dielectric spectroscopies. Arch. Metall. Mater., 2016,611:17-20.
DOI URL |
[30] |
UDDIN S, ZHENG G P, LQBAL Y, et al. Elastic softening near the phase transitions in (1-x)Bi1/2Na1/2TiO3-xBaTiO3 solid solutions. Mater. Res. Express, 2014,14:046102.
DOI URL |
[31] |
PUCHBERGER S, SOPRUNYUK V, MAJCHROWSKI A, et al. Domain wall motion and precursor dynamics in PbZrO3. Phys. Rev. B, 2016,9421:214101.
DOI URL |
[32] |
CHENG B, GABBAY M, FANTOZZI G. Anelastic relaxation associated with the motion of domain walls in barium titanate ceramics. J. Mater. Sci., 1996,3115:4141-4147.
DOI URL |
[33] |
JIMÉNEZ B, VICENTE J. Oxygen defects and low-frequency mechanical relaxation in Pb-Ca and Pb-Sm titanates. J. Phys. D Appl. Phys., 1998,314:446.
DOI URL |
[34] |
BOURIM E M, TANAKA H, GABBAY M, et al. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics. J. Appl. Phys., 2002,9110:6662-6669.
DOI URL |
[35] |
CHEN Y, WANG X S, LI Y S, et al. The low frequency relaxor properties of ferroelectric PZT-4 studied by DMA. J. Mater. Sci. Mater. Electron., 2019,308:1-9.
DOI URL |
[36] |
CHEN Y, YE H H, WANG X S, et al. Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics. J. Euro. Ceram., 2020,402:391-400.
DOI URL |
[37] | KUMAR N, TIRUPATHI P, KUMAR B, et al. Observation of dielectric relaxor behavior in Pb0.95Sr0.05( Zr0.5Ti0.5)O3 ceramics. Adv. Mater. Lett., 2015,64:284-289. |
[38] |
DA SILVA JR P S, VENET M, FLORÉNCIO O. Influence of diffuse phase transition on the anelastic behavior of Nb-doped Pb(Zr0.53Ti0.47)O3 ceramics. J. Alloy. Comp., 2015,647:784-789.
DOI URL |
[39] |
MAZUERA A, SILVA JR P, RODRIGUES A, et al. Origin of discrepancy between electrical and mechanical anomalies in lead-free (K, Na)NbO3-based ceramics. Phys. Rev. B, 2016,9418:184101.
DOI URL |
[40] | CORDERO F, CRACIUN F, VERARDI P. Dielectric and anelastic relaxation in PMN-PT relaxors. Ferroelectrics, 2003,2901:141-149. |
[41] |
YU Y, WANG X S, LI Y S, et al. Fatigue behaviors in PZT ceramics induced by mechanical cyclic load. Ferroelectrics Lett., 2014,414/5/6:123-128.
DOI URL |
[42] |
XIE S, XU J, CHEN Y, et al. Flexural fracture mechanisms and fatigue behaviors of Bi4Ti3O12-based high-temperature piezoceramics sintered at different temperatures. Ceram. Int., 2018,4414:16758-16765.
DOI URL |
[43] |
XIE S, XU J, CHEN Y, et al. Poling effect and sintering temperature dependence on fracture strength and fatigue properties of bismuth titanate based piezoceramics. Ceram. Int., 2018,4416:20432-20440.
DOI URL |
[44] |
ASMATULU R, CLAUS R, MECHAM J. Improving the damping properties of composites using ferroelectric inclusions. J. Intel. Mater. Syst. Str., 2005,165:463-468.
DOI URL |
[45] |
SUMITA M, GOHDA H, ASAI S, et al. New damping materials composed of piezoelectric and electro-conductive, particle-filled polymer composites: effect of the electromechanical coupling factor. Makromol. Chem., Rapid Commun., 1991,1212:657-661.
DOI URL |
[46] |
YU J, KANEKO H, ASAI S, et al. Electrical and dynamic mechanical behavior of BaTiO3/VGCF/LDPE composite. Compos. Interface., 2000,75/6:411-424.
DOI URL |
[47] |
MARRA S, RAMESH K, DOUGLAS A. The mechanical properties of lead-titanate/polymer 0-3 composites. Compos. Sci. Techno., 1999,5914:2163-2173.
DOI URL |
[48] |
ZHANG C, HU Z, GAO G, et al. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites. Mater. Design, 2013,46:503-510.
DOI URL |
[49] |
HONG X Q, WANG X S, LI X M, et al. Damping properties of epoxy-embedded piezoelectric composites. Key Engineering Materials, 2012,512-515:1342-1346.
DOI URL |
[50] | SHI M X, HUANG Z X, WEI T, et al. Damping properties and mechanism of 0-3 PMN/CB/EP composites. Adv. Mater. Res., 2009,66:45-48. |
[51] | 武传贵. 有机无机复合材料阻尼性能研究. 上海: 同济大学硕士学位论文, 2011. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||