无机材料学报 ›› 2019, Vol. 34 ›› Issue (1): 72-78.DOI: 10.15541/jim20180207 CSTR: 32189.14.10.15541/jim20180207
所属专题: MAX相和MXene材料; 钙钛矿材料; 二维材料
董宇辉, 曾书玉, 韩博宁, 薛洁, 宋继中, 曾海波
收稿日期:
2018-05-02
修回日期:
2018-07-24
出版日期:
2019-01-21
网络出版日期:
2018-12-17
作者简介:
董宇辉(1991-),女,讲师.E-mail: dong.yuhui@njust.edu.cn
基金资助:
DONG Yu-Hui, ZENG Shu-Yu, HAN Bo-Ning, XUE Jie, SONG Ji-Zhong, ZENG Hai-Bo
Received:
2018-05-02
Revised:
2018-07-24
Published:
2019-01-21
Online:
2018-12-17
About author:
DONG Yu-Hui. E-mail: dong.yuhui@njust.edu.cn
摘要:
全无机钙钛矿(CsPbX3)纳米晶因其出色的光电特性在光电子器件领域具有广泛应用, 然而稳定性依然是制约其发展的瓶颈。本工作结合当前的研究进展, 采用全固态反应, 通过对球磨参数以及反应物配比等多种条件的调控研究, 实现了在空气中可稳定放置60 d以上的BN/CsPbX3复合纳米晶荧光粉, 其发光中心波长可覆盖417~680 nm的范围, 发光峰半高宽为23~47 nm, 展示出极高的色纯度。在出色发光性能基础上, 进一步将其直接应用于白光LED照明, 获得了出色、稳定的发光性能。在空气中放置1 m后, 其亮度衰减仅为0.7%, 且连续工作2 h后, 衰减程度小于4%, 展现出优异的工作稳定性。
中图分类号:
董宇辉, 曾书玉, 韩博宁, 薛洁, 宋继中, 曾海波. BN/CsPbX3复合纳米晶的制备及其白光LED应用[J]. 无机材料学报, 2019, 34(1): 72-78.
DONG Yu-Hui, ZENG Shu-Yu, HAN Bo-Ning, XUE Jie, SONG Ji-Zhong, ZENG Hai-Bo. BN/CsPbX3 Composite Nanocrystals: Synthesis and Applications in White LED[J]. Journal of Inorganic Materials, 2019, 34(1): 72-78.
图1 全固态球磨合成CsPbX3 NCs示意图(a)和紫外光(365 nm)激发下的大产量红色钙钛矿荧光粉末照片(b)
Fig. 1 Scheme of the all-solid-state ball milling procedure for synthesis of CsPbX3 NCs (a) and optical image of large-scale red emission powder under UV light excitation (365 nm) (b)
图2 (a)不同组分CsPbX3 NCs的PL光谱, 内部插图为在正常日光和紫外光(黑色背景)下相应粉末的照片; (b)Pe-NCs的色域光谱(内黑线为NTSC)
Fig. 2 (a) PL emission spectra of CsPbX3 NCs powder, the corresponding optical images under normal daylight and UV light (black background) were exhibited inside; (b) Color gamut spectra of perovskite NCs (the inner black line indicating NTSC)
图4 空气中稳定的CsPbI3 NCs粉末
Fig. 4 The air stability of CsPbI3 NCs powder (a) The PL stability exposed in air; (b) X-ray diffraction (XRD) pattern of CsPbI3 NCs powder; (c) Photographs of the powder samples with time changing under the sunlight (left) and UV light (right)
图5 CsPbI3 NCs的稳定性分析
Fig. 5 Analysis of air stability of CsPbI3 NCs (a) Stability test of CsPbI3 NCs powder with different BN quantity; (b) SEM image of CsPbI3 NCs; (c) Energy dispersive spectroscopy (EDS) mapping images of (b)
图6 Pe-NCs构筑的白光LED
Fig. 6 Proof-of-concept demonstration of white LED by blending green and red Pe-NCs on a commercial blue LED chip (a) Schematically depicts the packing method of white LED; (b) EL spectra of three typical devices exhibiting (1) green-white, (2) white, and (3) red-white; (c) Photographs of the white LED under different operating voltage
图7 白光LED的稳定性
Fig. 7 The stability of white-light LED (a) The luminance stability of white-light LED placed in the air measured at the voltage of 2.7 V; (b) The working stability of the white-light LED after continuous operating for 2 h
CsPbX3 | Emission peak/nm | FWHM/nm | CsPbX3 | Emission peak/nm | FWHM/nm |
---|---|---|---|---|---|
CsPbCl3 | 417 | 23 | CsPbIBr2 | 551 | 41 |
CsPbCl2.14Br0.86 | 430 | 23 | CsPbI2Br | 605 | 47 |
CsPbCl2Br | 447 | 27 | CsPbI2.14Br0.86 | 642 | 46 |
CsPbClBr2 | 483 | 38 | CsPbI3 | 680 | 40 |
CsPbBr3 | 532 | 33 |
表s1 不同卤素配比的CsPbX3发光性能汇总
Table s1 Comprehensive comparisons for the representative perovskite NCs
CsPbX3 | Emission peak/nm | FWHM/nm | CsPbX3 | Emission peak/nm | FWHM/nm |
---|---|---|---|---|---|
CsPbCl3 | 417 | 23 | CsPbIBr2 | 551 | 41 |
CsPbCl2.14Br0.86 | 430 | 23 | CsPbI2Br | 605 | 47 |
CsPbCl2Br | 447 | 27 | CsPbI2.14Br0.86 | 642 | 46 |
CsPbClBr2 | 483 | 38 | CsPbI3 | 680 | 40 |
CsPbBr3 | 532 | 33 |
Sample | Synthetic methods | FWHM/nm | Color/nm | Ref. |
---|---|---|---|---|
CsPbX3(X=Cl, Br, I) | All-solid-state ball milling | 23-47 | 417-680 | This work |
CsPbX3(X=Cl, Br, I) | Supersaturated recrystallization | 12-39 | 400-650 | [1] |
CsPbX3(CsPb(Br/Cl)3 -CsPbI3) | Droplet-based microfluidic platform | 20-45 | 470-690 | [2] |
CsPbX3(X=Cl, Br, I) | Fast Anion-Exchange | 12-40 | 410-700 | [3] |
表s2 本文CsPbX3与典型溶液法制备的发光性能对比
Table s2 Comparison of FWHM of CsPbX3 with typical solution synthesis
Sample | Synthetic methods | FWHM/nm | Color/nm | Ref. |
---|---|---|---|---|
CsPbX3(X=Cl, Br, I) | All-solid-state ball milling | 23-47 | 417-680 | This work |
CsPbX3(X=Cl, Br, I) | Supersaturated recrystallization | 12-39 | 400-650 | [1] |
CsPbX3(CsPb(Br/Cl)3 -CsPbI3) | Droplet-based microfluidic platform | 20-45 | 470-690 | [2] |
CsPbX3(X=Cl, Br, I) | Fast Anion-Exchange | 12-40 | 410-700 | [3] |
图S6 CsPbI3粉末的SEM照片和元素比例(a)以及EDS能谱(b)
Fig. S3 EDS information of CsPbI3 NCs powder (a) SEM image with corresponding atomic percentage information; (b) EDS spectrum of CsPbI3 NCs
[1] | LI X M, WU Y, ZHANG S L, et al.CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2435-2445. |
[2] | LI X M, CAO F, YU D J, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13(9): 1603996-1-24. |
[3] | LI X M, YU D J, CAO F, et al.Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Advanced Functional Materials, 2016, 26(32): 5903-5912. |
[4] | YAO E P, YANG Z, MENG L, et al. High-brightness blue and white leds based on inorganic perovskite nanocrystals and their composites. Advanced Materials, 2017, 29(23): 1606859-1-7. |
[5] | SONG J Z, LI J H, LI X M, et al.Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162-7167. |
[6] | LI J H, XU L M, WANG T, et al. 50-fold eqe improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885-1-9. |
[7] | JIANG W L, ZHOU W, YING J F, et al.Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers. Journal of Inorganic Materials, 2017, 32(1): 96-100. |
[8] | YANG Y, GAO J, CUI J R, et al.Research progress of perovskite solar cells. Journal of Inorganic Materials, 2015, 30(11): 1131-1138. |
[9] | DONG Y H, GU Y, ZOU Y S, et al.Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622-5632. |
[10] | SONG J Z, XU L M, LI J H, et al.Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Advanced Materials, 2016, 28(24): 4861-4869. |
[11] | WANG Y, LI X M, SONG J Z, et al.All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Advanced Materials, 2015, 27(44): 7101-7108. |
[12] | LI X M, WANG Y, SUN H D, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Advanced Materials, 2017, 29(36): 1701185-1-9. |
[13] | RAJA S N, BEKENSTEIN Y, KOC M A, et al.Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces, 2016, 8(51): 35523-35533. |
[14] | LI Z, KONG L, HUANG S, et al.Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/ alumina monolith. Angewandte Chemie International Edition, 2017, 129(28): 8246-8250. |
[15] | KOJIMA A, IKEGAMI M, TESHIMA K, et al.Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chemistry Letters, 2012, 41(4): 397-399. |
[16] | AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society, 2015, 137(32): 10276-10281. |
[17] | LIGNOS I, STAVRAKIS S, NEDELCU G, et al.Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters, 2016, 16(3): 1869-1877. |
[18] | ZHU Z Y, YANG Q Q, GAO L F, et al.Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. Journal of Physical Chemistry Letters, 2017, 8(7): 1610-1614. |
[19] | PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6): 3692-3696. |
[20] | NEDELCU G, PROTESESCU L, YAKUNIN S, et al.Fast anion- exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 2015, 15(8): 5635-5640. |
[21] | JODLOWSKI AD, YEPEZ A, LUQUE R, et al.Benign-by-design solventless mechanochemical synthesis of three-, two-, and one-dimensional hybrid perovskites. Angewandte Chemie International Edition, 2017, 55(48): 14972-14977. |
[22] | MANUKYAN K V, YEGHISHYAN A V, MOSKOVSKIKH D O, et al.Mechanochemical synthesis of methylammonium lead iodide perovskite. Journal of Materials Science, 2016, 51(19): 9123-9130. |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[3] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. |
[4] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[5] | 杨博, 吕功煊, 马建泰. 镍铁氢氧化物-磷化钴复合电极电催化分解水研究[J]. 无机材料学报, 2024, 39(4): 374-382. |
[6] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[7] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[8] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[9] | 陈雨, 林埔安, 蔡冰, 张文华. 钙钛矿太阳能电池无机空穴传输材料的研究进展[J]. 无机材料学报, 2023, 38(9): 991-1004. |
[10] | 胡忠良, 傅赟天, 蒋蒙, 王连军, 江莞. Nb/Mg3SbBi界面层热稳定性研究[J]. 无机材料学报, 2023, 38(8): 931-937. |
[11] | 刘建, 王凌坤, 许保亮, 赵倩, 王耀萱, 丁艺, 张胜泰, 段涛. 熔盐法低温合成掺钕ZrSiO4陶瓷的物相演变和化学稳定性[J]. 无机材料学报, 2023, 38(8): 910-916. |
[12] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[13] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[14] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[15] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||