无机材料学报 ›› 2015, Vol. 30 ›› Issue (10): 1009-1017.DOI: 10.15541/jim20150060 CSTR: 32189.14.10.15541/jim20150060
• • 下一篇
刘家琴1,2, 吴玉程2
收稿日期:
2015-01-28
修回日期:
2015-04-14
出版日期:
2015-10-20
网络出版日期:
2015-09-30
作者简介:
刘家琴(1981–), 女, 博士, 副研究员. E-mail:jqliu@hfut.edu.cn
基金资助:
LIU Jia-Qin1,2, WU Yu-Cheng2
Received:
2015-01-28
Revised:
2015-04-14
Published:
2015-10-20
Online:
2015-09-30
About author:
LIU Jia-Qin. E-mail:jqliu@hfut.edu.cn
Supported by:
摘要:
铋系半导体BiOX(X=Cl、Br、I)因其独特的层状结构和合适的禁带宽度而表现出优异的光催化活性与稳定性, 已成为光催化材料领域极具应用前景的材料体系。本文首先针对BiOX(X=Cl、Br、I)光催化材料研究中的关键科学问题进行了深入分析, 进一步综述了国内外解决上述关键问题所采取的有效措施, 包括: 微结构调控、半导体复合、贵金属沉积、离子掺杂和表面敏化等, 并针对纳米结构BiOX(X=Cl、Br、I)负载于合适载体上实现固载的研究进展进行了概述, 从而对基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究进展进行了全面深入的综述, 最后展望了BiOX光催化材料的研究方向与趋势。
中图分类号:
刘家琴, 吴玉程. 基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究进展[J]. 无机材料学报, 2015, 30(10): 1009-1017.
LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the High Performance BiOX(X=Cl, Br, I) Based Photo-catalysts[J]. Journal of Inorganic Materials, 2015, 30(10): 1009-1017.
图2 黑、白BiOCl纳米粉体的UV-Vis DRS谱图、对RhB的可见光催化降解反应速率常数以及可见光催化活性提高机理[36]
Fig. 2 UV-Vis DRS spectrum and photocatalytic degradation curves of black and white BiOCl nanocatalysts[36]
图3 BiOCl/Bi2O3纳米异质光催化剂的SEM、HRTEM表征、对有机物(异丙醇)可见光降解性能及光催化活性提高机理[38]
Fig. 3 Morphology, photocatalytic performance and activity enhancement mechanism of heterostructured BiOCl/Bi2O3 catalysts[38]
图4 Ag/BiOX(X=Cl、Br、I)纳米复合光催化剂的FESEM形貌以及Ag沉积量对BiOX光催化降解有机物活性的影响[45]
Fig. 4 Morphology and influence of Ag deposition amounts on the Ag/BiOX(X=Cl, Br, I) photocatalytic activity[45]
图5 Mn-BiOCl光催化剂的形貌、光学吸收特性及可见光催化降解有机物性能分析[47]
Fig. 5 Morphology (a), optical absorption characteristic (b) and photocatalytic performance (c, d) of undoped and Mn-doped BiOCl particles under visible light irradiation[47]
图6 Ag-BiOCl/TNTAs纳米异质阵列薄膜的形貌及光催化活性提高机理[58]
Fig. 6 Morphology (a) and photocatalytic activity enhancement mechanism (b) of Ag-BiOCl/TNTAs film catalyst under sunlight irradiation[58]
[1] | HASHIMOTO K, IRIE H, FUJISHIMA A.TiO2 photocatalysis: a historical overview and future prospects.Jpn. J. Appl. Phys., 2005, 44(12): 8269-8285. |
[2] | KUMAR S G, DEVI L G.Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics.J. Phys. Chem. A, 2011, 115(46): 13211-13241. |
[3] | DAGHRIR R, DROGUI P, ROBERT D.Modified TiO2 for environmental photocatalytic applications: a review.Ind. Eng. Chem. Res., 2013, 52(10): 3581-3599. |
[4] | ZHANG X, AN Z H, JIA F L, et al.Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres.J. Phys. Chem. C, 2008, 112(3): 747-753. |
[5] | AN H Z, DU Y, WANG T M, et al.Photocatalytic properties of BiOX (X = Cl, Br, and I).Rare Metals, 2008, 27(3): 243-250. |
[6] | CHANG X F, HUANG J, CHENG C, et al.BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: characterization and catalytic performance. Catal. Comm., 2010, 11(5): 460-464. |
[7] | HENLE J, SIMON P, FRENZEL A, et al.Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions.Chem. Mater., 2007, 19(3): 366-373. |
[8] | ZHOU L, WANG W Z, XU H L, et al.Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis.Chem. Eur. J., 2009, 15(7): 1776-1782. |
[9] | SAISON T, CHEMIN N, CHANÉAC C, et al. Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light.J. Phys. Chem. C, 2011, 115(13): 5657-5666. |
[10] | KOHTANI S, KOSHIKO M, KUDO A, et al.Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator.Appl. Catal. B: Environ., 2003, 46(3): 573-586. |
[11] | TOKUNAGA S, KATO H, KUDO A.Selective preparation of monoclinic and tetragonal bivo4 with scheelite structure and their photocatalytic properties.Chem. Mater., 2001, 13(12): 4624-4628. |
[12] | TANG J W, ZOU Z G, YE J H. photocatalytic decomposition of organic contaminants by bi2wo6 under visible light irradiation.Catal. Lett., 2004, 92(1/2): 53-56. |
[13] | ZHANG C, ZHU Y F. synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalyst.Chem. Mater., 2005, 17(13): 3537-3545. |
[14] | FU H B, PAN C S, YAO W Q, et al.Visible-light-induced degradation of rhodamine b by nanosized Bi2WO6.J. Phys. Chem. B, 2005, 109(47): 22432-22439. |
[15] | YAO W F, WANG H, XU X H, et al.Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12.Mater. Lett., 2003, 57(13/14): 1899-1902. |
[16] | HOU D F, LUO W, HUANG Y H, et al.Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light- driven photocatalytic properties.Nanoscale, 2013, 5: 2028-2035. |
[17] | ZHANG K L, LIU C M, HUANG F Q, et al.Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst.Appl. Catal. B: Environ., 2006, 68(3/4): 125-129. |
[18] | PARE B, SARWAN B, JONNALAGADDA S B.The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst. J. Mol. Struct., 2012, 1007: 196-202. |
[19] | DENG H, WANG J W, PENG Q, et al.Controlled hydrothermal synthesis of bismush oxyhalide nanobelts and nanotubes.Chem. Euro. J., 2005, 11: 6519-6524. |
[20] | JIANG J, ZHAO K, XIAO X Y, et al.Synthesis and facet-dependent photoreactivity of biocl single-crystalline nanosheets.J. Am. Chem. Soc., 2012, 134(10): 4473-4476. |
[21] | ZHANG J, SHI F J, LIN J, et al.Self-Assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater., 2008, 20(9): 2937-2941. |
[22] | XIA J X, YIN S, LI H M, et al.Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid.Dalton Trans., 2011, 40: 5249-5258. |
[23] | XIAO X, ZHANG W D.Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J. Mater. Chem., 2010, 20: 5866-5870. |
[24] | SHI X J, CHEN X L, CHEN X, et al.Solvothermal synthesis of BiOI hierarchical spheres with homogeneous sizes and their high photocatalytic performance.Mater. Lett., 2012, 68: 296-299. |
[25] | CAO C B, LV R T, ZHU H S.Preparation of single-crystal BiOCl nanorods via surfactant soft-template inducing growth.J. Metastab. Nanocryst. Mater., 2005, 23: 79-82. |
[26] | SHANG M, WANG W Z, ZHANG L.Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template.J. Hazard. Mater., 2009, 167(1/2/3): 803-809. |
[27] | WANG C H, SHAO C L, LIU Y C, et al.Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning.Scripta Mater., 2008, 59(3): 332-335. |
[28] | PERERA S, ZELENSKI N A, PHO R E, et al.Rapid and exothermic solid-state synthesis of metal oxyhalides and their solid solutions via energetic metathesis reactions.J. Solid State Chem., 2007, 180(10): 2916-2925. |
[29] | 魏平玉, 杨青林, 郭林. 卤氧化铋化合物光催化剂. 化工进展, 2009, 21(9): 1734-1741. |
[30] | 王燕琴, 瞿梦, 冯红武, 等. 卤氧化铋光催化剂的研究进展. 化工进展, 2014, 33(3): 660-667. |
[31] | 张喜. 新型卤化氧铋BiOX(X=Cl、Br、I)光催化剂的合成、表征及催化性能研究. 武汉: 华中师范大学博士论文, 2010. |
[32] | HUANG W L, ZHU Q S.Electronic structures of relaxed BiOX (X=F, Cl, Br, I) photocatalysts. Comput. Mater.Sci., 2008, 43(4): 1101-1108. |
[33] | HUANG W L.Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations.J. Comput. Chem., 2009, 30(12): 1882-1891. |
[34] | HUANG W L, ZHU Q S.DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states. J. Comput. Chem., 2009, 30(2): 183-190. |
[35] | YE L Q, ZAN L, TIAN L H, et al.The {001} facets-dependent high photoactivity of BiOCl nanosheets.Chem. Commun., 2011, 47: 6951-6953. |
[36] | YE L Q, DENG K J, XU F, et al.Increasing visible-light absorption for photocatalysis with black BiOCl.Phys. Chem. Chem. Phys., 2012, 14: 82-85. |
[37] | ZHU L P, LIAO G H, BING N C, et al.Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization.Cryst. Eng. Comm., 2010, 12: 3791-3796. |
[38] | CHAI S Y, KIM Y J, JUNG M H, et al.Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst.J. Catal., 2009, 262(1): 144-149. |
[39] | SHAMAILA S, SAJJAD A K L, CHEN F, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst.J. Colloid Interface Sci., 2011, 356(2): 465-472. |
[40] | KONG L, JIANG Z, LAI H H, et al.Unusual reactivity of visible- light-responsive AgBr-BiOBr heterojunction photocatalysts.J. Catal., 2012, 293: 116-125. |
[41] | ZHANG X, ZHANG L Z, XIE T F, et al.Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem.C, 2009, 113(17): 7371-7378. |
[42] | WANG W D, HUANG F Q, LIN X P. xBiOI-(1-x)BiOCl as efficient visible light driven photocatalysts.Scripta Mater., 2007, 56(8): 669-672. |
[43] | LIU Y Y, SON W J, LU J B, et al.Composition dependence of the photocatalytic activities of BiOCl1-xBrx solid solutions under visible light.Chem. Eur. J., 2011, 17(34): 9342-9349. |
[44] | CHEN H, CHEN S, QUAN X, et al.Structuring a TiO2-based photonic crystal photocatalyst with schottky junction for efficient photocatalysis.Environ. Sci. Technol., 2010, 44(1): 451-455. |
[45] | YU C L, CAO F F, SHU Q, et al.Preparation, characterization and photocatalytic performance of Ag/BiOX (X=Cl, Br, I) composite photocatalysts.Acta Phys-Chim. Sin., 2012, 28(3): 647-653. |
[46] | YU C L, CAO F F, LI G, et al.Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation.Sep. Purif. Technol., 2013, 120: 110-122. |
[47] | PARE B, SARWAN B, JONNALAGADDA S B.Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition.Appl. Surf. Sci., 2011, 258(1): 247-253. |
[48] | WANG R J, JIANG G H, WANG X H, et al.Efficient visible- light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres. Power Technol., 2012, 228: 258-263. |
[49] | ZHANG K, ZHANG D Q, LIU J, et al.A novel nanoreactor framework of iodine-incorporated BiOCl core-shell structure: enhancedlight-harvesting system for photocatalysis.Cryst. Eng. Comm., 2012, 14: 700-707. |
[50] | ZHANG X, ZHANG L Z.Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI.J. Phys. Chem. C, 2010, 114(42): 18198-18206. |
[51] | YE L Q, GONG C Q, LIU J Y, et al.Bin(Tu)xCl3n: a novel sensitizer and its enhancement of BiOCl nanosheets’s photocatalytic activity. J. Mater. Chem., 2012, 22: 8354-8360. |
[52] | LI K, TANG Y P, XU Y L, et al. A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl. Catal. B: Environ., 2013, 140-141: 179-188. |
[53] | LIU Z S, WU B T, NIU J N, et al.Solvothermal synthesis of BiOBr thin film and its photocatalytic performance.Appl. Surf. Sci., 2014, 288: 369-372. |
[54] | YE L Q, CHEN J N, TIAN L H, et al. BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism. Appl. Catal. B: Environ., 2013, 130-131:1-7. |
[55] | GRIMES C A.Synthesis and application of highly ordered arrays of TiO2 nanotubes.J. Mater. Chem., 2007, 17: 1451-1457. |
[56] | GRIMES C A, MOR G K.TiO2 Nanotube Arrays: Synthesis, Properties, and Applications. Springer: Heidelberg, 2009: 129-146. |
[57] | CHEN X B, MAO S S.Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.Chem. Rev., 2007, 107: 2891-2959. |
[58] | 刘家琴. BiOX(X=Cl、I)/TiO2纳米复合阵列的可控构筑及其有机污染物降解性能研究. 合肥: 合肥工业大学博士学位论文, 2014. |
[59] | LIU J Q, RUAN L L, ADELOJU S B, et al.BiOI/TiO2 nanotube arrays, a unique flake-tube structured p-n junction with remarkable visble- light photoelectrocatalytic performance and stability.Dalton Trans., 2014, 43: 1706-1715. |
[60] | RUAN L L, LIU J Q, ZHOU Q, et al.A flake-tube structured BiOBr-TiO2 nanotube array heterojunction with enhanced visible light photocatalytic activity.New J. Chem., 2014, 38: 3022-3028. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[10] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[11] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[12] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[13] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[14] | 蔡和庆, 韩璐, 杨松松, 薛新玉, 张扣, 孙志成, 刘儒平, 胡堃, 危岩. 小粒径Fe3O4-DMSA-PEI磁性纳米颗粒的制备及其基因负载能力研究[J]. 无机材料学报, 2024, 39(5): 517-524. |
[15] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||