| [1] Emadi A, Rajashekara K, Williamson S S, et al. Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE T. Veh. Technol., 2005, 54(3): 763–770. [2] Hwang J J, Wang D Y, Shih N C. Development of a lightweight fuel cell vehicle. J. Power Sources, 2005, 141(1): 108–115. [3] Yang S T, Cao Z X, Zhang Y F. Preparation and characteristic of new type nano rare earth electrocatalyst for PEMFC. J. Inorg. Mater., 2004, 19(4): 921–925.[4] Xu Y, Tian J H, Luo W H, et al. Reprocessing of the ineffective Pt/C catalysts in PEMFC. Chin. J. Power Sources, 2006, 30(5): 349–351.[5] Shao Y Y, Liu J, Wang Y, et al. Novel catalyst support materials for PEM fuel cells: current status and future prospects. J. Mater. Chem., 2009, 19(1): 46–59.[6] Shrestha S, Liu Y, Mustain W E. Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: a review. Cat. Rev.-Sci. Eng., 2011, 53(3): 256–336.[7] Roen L M, Paik C H, Jarvic T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett., 2004, 7(1): A19–A22.[8] Chhina H, Campbell S, Kesler O. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J. Power Sources, 2006, 161(2): 893–900.[9] Huang S Y, Ganesan P, Popov B N. Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl. Catal., B-Environ., 2011, 102(1/2): 71–77.[10] Liu X, Chen J, Liu G, et al. Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts. J. Power Sources, 2010, 195(13SI): 4098–4103.[11] Sasaki K, Zhang L, Adzic R R. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys. Chem. Chem. Phys., 2008, 10(1): 159–167. [12] Ioroi T, Siroma Z, Fujiwara N, et al. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun., 2005, 7(2): 183–188.[13] Ioroi T, Senoh H, Yamazaki S, et al. Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc., 2008, 155(4): B321–B326.[14] Slavcheva E, Nikolova V, Petkova T, et al. Electrocatalytic activity of Pt and PtCo deposited on ebonex by BH reduction. Electrochim. Acta , 2005, 50(27): 5444–5448.[15] Chhina H, Campbell S, Kesler O. Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs. J. Electrochem. Soc., 2007, 154(6): B533–B539.[16] Ye J L, Liu J G, Zou Z G, et al. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method. J. Power Sources, 2010, 195(9): 2633–2637.[17] Liu Y, Shrestha S, Mustain W E. Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media. ACS Catal., 2012, 2(3): 456–463.[18] Kulesza P J, Faulkner L R. Electrocatalysis at a novel electrode coating of nonstoichiometric tungsten(VI, V) oxide aggregates. J. Electrochem. Soc., 1988, 110(15): 4905–4913.[19] Kulesza P J, Faulkner L R. Reactivity and charge transfer at the tungsten oxide/sulfuric acid interfaces: nonstoichiometric tungsten(VI, V) oxide films as powerful electroreduction catalysts. Colloids Surf., 1989, 41: 123–134.[20] Shim J, Lee C R, Lee H K, et al. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J. Power Sources, 2001, 102(1/2): 172–177.[21] Zhang Z H, Wang X G, Cui Z M, et al. Pd nanoparticles supported on WO3-C hybrid material as catalyst for oxygen reduction reaction. J. Power Sources, 2008, 185(2): 941–945. |