无机材料学报 ›› 2012, Vol. 27 ›› Issue (4): 427-432.DOI: 10.3724/SP.J.1077.2012.00427 CSTR: 32189.14.SP.J.1077.2012.00427

• • 上一篇    下一篇

CaZr1-xInxO3-α(x=0, 0.05, 0.10, 0.15)质子导体的电学性能

厉 英, 逯圣路, 王常珍   

  1. (东北大学 材料与冶金学院, 沈阳110819)
  • 收稿日期:2011-04-22 修回日期:2011-06-03 出版日期:2012-04-10 网络出版日期:2012-03-12
  • 基金资助:
    国家自然科学基金(50774018, 51074038) National Natural Science Foundation of China (50774018, 51074038)

Preparation and Properties of CaZr1-xInxO3-α Proton Conductor

LI Ying, LU Sheng-Lu, WANG Chang-Zhen   

  1. (School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China)
  • Received:2011-04-22 Revised:2011-06-03 Published:2012-04-10 Online:2012-03-12

摘要:

采用固相反应法在1400℃合成了CaZr1-xInxO3-α(x=0, 0.05, 0.10, 0.15)陶瓷粉体, 在空气中1550℃, 10 h对材料进行二次烧结. XRD物相分析结果确定合成后的样品中有CaZrO3和微量CaIn2O4存在. 实验在600’850℃含水氩气中测量了样品的交流阻抗谱, 计算出其电导率随温度变化的规律和电导激活能. 在800℃时, CaZr1-xInxO3-α的电导率分别为4.64×10-7 S/cm(x=0)、3.06×10-4 S/cm(x=0.05)、3.89×10-4 S/cm(x=0.10)、3.93×10-4 S/cm (x=0.15). 研究结果表明: 对CaZrO3掺In能显著提高材料的电导率, 降低电导激活能, 掺杂量x>0.1时, 电导率增加变缓, 并且电导率随温度的升高而增大. 研究得到CaZr1-xInxO3-α的电导率与掺杂量的关系式.

关键词: 质子导体, 阻抗谱, 电导率, 掺杂

Abstract:

CaZr1-xInxO3-α(x=0, 0.05, 0.10, 0.15) ceramics were synthesized by using solid state reaction method at 1400℃, and then sintered at 1550℃ for 10 h in air. The XRD results show that there exist CaZrO3 and infinitesimal CaIn2O4 phases. The AC impedance spectra of the sintered CaZr1-xInxO3-α were measured in the temperature range from 600℃ to 850℃ in argon atmosphere containing water vapor. The relation between conductivity and temperature was obtained, as well as the activation energy. At 800℃, the conductivity of CaZr1-xInxO3-α is 4.64×10-7 S/cm (x=0), 3.06×10-4 S/cm (x=0.05), 3.89×10-4 S/cm (x=0.1), 3.93×10-4 S/cm (x=0.15), respectively. The results show that the conductivities of the samples improves remarkably, the activation energy decreases rapidly with In doping contents increasing. The conductivities slightly increase with the increase of In doping contents (x>0.1), they increases greatly with the increase of temperature. The relationship between In doping contents and conductivity are deduced.

Key words: proton conductor, impedance spectroscopy, conductivity, doping

中图分类号: