[1] Tuan W H, Chen R Z, Wang T C, et al. Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc., 2002, 22(16): 2827-2833.
[2] 王广奎, 康 宏, 包广洁, 等. 纳米氧化锆的含量对纳米氧化锆增韧氧化铝陶瓷力学性能和显微结构的影响. 华西口腔医学杂志, 2006, 24(5): 404-406.
[3] 许立信, 何潮洪, 朱明乔, 等. 锆改性氧化铝负载的纳米金催化剂上环己烷氧化研究. 高校化学工程学报, 2009, 23(2): 309-313.
[4] 李 凝, 罗来涛(LI Ning, et al). 制备方法对负载型纳米ZrO2/ Al2O3复合载体性能的影响. 催化学报(Chinese J. Catal.), 2007, 28(9): 773-778.
[5] A’guila G, Gracia F, Araya Paulo. CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Appl. Catal. A General, 2008, 343(1): 16-24.
[6] Li G, Li W, Zhang M, et al. Characterization and catalytic application of homogeneous nano-composite oxides ZrO2–Al2O3. Catal. Today, 2004, 93-95: 595-601.
[7] 陈国清, 张凯锋, 王国峰, 等. 纳米Al2O3/ZrO2复合粉体的制备及表征. 材料科学与工艺, 2004, 12(1): 21-23.
[8] Bellido J D, Assaf E M. Reduction of NO by CO on Cu/ZrO2/Al2O3 catalysts: characteri-zation and catalytic activities. Fuel, 2009, 88(9): 1673-1679.
[9] 赵继华, 沈伟国, 安学勤. 氧化铝-氧化锆纳米复合颗粒的制备及表征. 兰州大学学报(自然科学版), 2005, 41(4): 60-64.
[10] Yeo S D, Debenedetti P G, Radosz M, et al. Supercritical antisolvent process for substituted para-linked aromatic polymides: phase equilibrium and morphology study. Macromolecules, 1993, 26(23): 6207-6210.
[11] 张 岩, 陈 岚, 李保国, 等. 超临界CO2抗溶剂法制备乙基纤维素微球试验. 化学工程, 2005, 33(3): 63-67.
[12] Yeo S D, Lim G B, Debenedetti P G, et al. Formation of micro- particulate protein powders using a supercritical fluid anti-solvent. Biotech. and Bioeng., 1993, 41(3): 341-346.
[13] Schmitt W J, Salada M C, Shook G G, et al. Finely-divided powder by carrier solution injection into a near or supercritical fluid. AIChE Journal, 1995, 41(11): 2476-2486.
[14] Tenorio A, Gordillo M D, Pereyra C, et al. Controlled submicro particle formation of ampicillin by supercritical antisolvent precipitation. J. Supercritical Fluids, 2007, 40(2): 308-316.
[15] Reverchon E, Della P G, Sannino D, et al. Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor. Powder Technology, 1999, 102(2): 127-134.
[16] Tang Z R, Edwards J K, Bartley J K, et al. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. J. Catal., 2007, 249(2): 208-219.
[17] 何春燕, 姜浩锡, 张敏华(HE Chun-Yan, et al.). 超临界抗溶剂法制备纳米氧化铝颗粒. 催化学报(Chinese J. Catal.), 2007, 10(28): 890-894.
[18] 张登前, 段爱军, 赵 震, 等. NiMo/ZrO2-Al2O3柴油深度加氢脱硫催化剂的研究. 工业催化, 2008, 16(10): 117-121.
[19] Reverchon E, Macro De I, Torino E. Nanoparticles production by supercritical antisolvent precipitation: a general interpretation. J. Supercritical Fluids, 2007, 43(1): 126-138.
[20] Yeo S D, Debenedetti P G, Radosz M, et al. Supercritical antisolvent process for a series of substituted para-linked aromatic polymides. Macromolecules, 1995, 28: 1316-1317.
[21] Dixon D J, Johnston K P, Bodmeier R A. Polymeric materials formed by precipitation with a compressed fluid antisolvents. AIChE Journal, 1993, 39(1): 127-139.
[22] Martin A, Cocero M J. Numberical of modeling jet hydrodynamic,mass transfer, and crystallization kinetics in the supercritical antisolvents (SAS) process. J. Supercritical Fluids, 2004, 32(2): 203-219.
[23] Chves F, Debenedetti P G, Luo J J, et al. Estimation of the characteristic time scales in the supercritical antisolvents process. Ind. Eng. Chem. Res., 2003, 42(13): 3156-3162. |