[1] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928-935.
DOI
PMID
|
[2] |
QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6: 6362.
DOI
PMID
|
[3] |
HE B, RAO Z, CHENG Z, et al. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries. Advanced Energy Materials, 2021, 11(14): 2003690.
DOI
URL
|
[4] |
JUNG W B, PARK H, JANG J S, et al. Polyelemental nanoparticles as catalysts for a Li-O2 battery. ACS nano, 2021, 15(3): 4235-4244.
DOI
URL
|
[5] |
WOOD K N, KAZYAK E, CHADWICK A F, et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2016, 2(11): 790-801.
PMID
|
[6] |
SANCHEZ A J, KAZYAK E, CHEN Y, et al. Plan-view operando video microscopy of Li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Letters, 2020, 5(3): 994-1004.
DOI
URL
|
[7] |
AURBACH D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000, 89(2): 206-218.
DOI
URL
|
[8] |
CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode. Advanced Science, 2016, 3(3): 1500213.
DOI
URL
|
[9] |
SHEN X, LI Y, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature Communications, 2019, 10: 900.
DOI
PMID
|
[10] |
XU R, ZHANG X Q, CHENG X B, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Advanced Functional Materials, 2018, 28(8): 1705838.
DOI
URL
|
[11] |
LIU Y, LIU Q, XIN L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy, 2017, 2: 17083.
DOI
URL
|
[12] |
XU K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23): 11503-11618.
DOI
PMID
|
[13] |
HUANG S, ZHANG W, MING H, et al. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Letters, 2019, 19(3): 1832-1837.
DOI
URL
|
[14] |
PEI F, FU A, YE W, et al. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano, 2019, 13(7): 8337-8346.
DOI
PMID
|
[15] |
YAN K, LU Z, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 2016, 1: 16010.
DOI
URL
|
[16] |
PEI A, ZHENG G, SHI F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Letters, 2017, 17(2): 1132-1139.
DOI
PMID
|
[17] |
ZHANG Y, LUO W, WANG C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences, 2017, 114(14): 3584-3589.
DOI
URL
|
[18] |
QIU H, TANG T, ASIF M, et al. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Advanced Functional Materials, 2019, 29(19): 1808468.
DOI
URL
|
[19] |
HU Z, LI Z, XIA Z, et al. PECVD-derived graphene nanowall/ lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Materials, 2019, 22: 29-39.
DOI
URL
|
[20] |
HOU G, SUN Q, AI Q, et al. Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. Journal of Power Sources, 2019, 416: 141-147.
DOI
URL
|
[21] |
ZHANG F, LIU X, YANG M, et al. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy, 2020, 69: 104443.
DOI
URL
|
[22] |
HE Y, XU H, SHI J, et al. Polydopamine coating layer modified current collector for dendrite-free Li metal anode. Energy Storage Materials, 2019, 23: 418-426.
DOI
URL
|
[23] |
ZHANG D, DAI A, WU M, et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Letters, 2019, 5(1): 180-186.
DOI
URL
|
[24] |
NAN Y, LI S, HAN C, et al. Interlamellar lithium-ion conductor reformed interface for high performance lithium metal anode. Advanced Functional Materials, 2021, 31(25): 2102336.
DOI
URL
|
[25] |
LIU Y, WU X, NIU C, et al. Systematic evaluation of carbon hosts for high-energy rechargeable lithium-metal batteries. ACS Energy Letters, 2021, 6(4): 1550-1559.
|
[26] |
LIU H, WANG E, ZHANG Q, et al. Unique 3D nanoporous/ macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Materials, 2019, 17: 253-259.
DOI
URL
|
[27] |
LIN K, LI T, CHIANG S W, et al. Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes. Small, 2020, 16(37): 2001784.
DOI
URL
|
[28] |
YANG D, ZHAO C, LIAN R, et al. Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Advanced Functional Materials, 2021, 31(24): 2010987.
DOI
URL
|
[29] |
ZHANG W, ZHUANG H L, FAN L, et al. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Science Advances, 2018, 4(2): eaar4410.
DOI
URL
|
[30] |
FU A, WANG C, PENG J, et al. Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries. Advanced Functional Materials, 2021, 31(15): 2009805.
DOI
URL
|