[1] Haware Rahul V, Tho Ingunn, Bauer-Brandl A, et al. Application of multivariate methods to compression behavior evaluation of directly compressible materials. Journal of Pharmaceutics and Biopharmaceutics, 2009, 72(1): 148-155.
[2] 孟正华, 黄尚宇. 压制方式对锆钛酸铅压电陶瓷密度及性能影响的研究. 粉末冶金技术, 2008, 26(1): 49-53.
[3] 赵 然, 周 静, 魏长松, 等. 成型工艺对xPMS-2(1-x)PZN陶瓷性能的影响. 四川大学学报, 2005, 42(S1): 410-414.
[4] 董林峰, 李从心. 金属粉末成形过程的裂纹预测.上海交通大学学报, 2001, 35(1): 90-93.
[5] Park H, Kim K T. Consolidation behavior of SiC powder under cold compaction. Materials Science and Engineering, 2001, 299(1/2): 116-124.
[6] Sonnergaard J M. Investigation of a new mathematical model for compression of pharmaceutical powders. European Journal of Pharmaceutical Sciences, 2001, 14(2): 149-157.
[7] Wu C Y, Hancock B C, Mills A, et al. Numerical and experimental investigation of capping mechanisms during pharmaceutical tablet compaction. Powder Technology, 2008, 181(2): 121-129.
[8] Henderson R J, Chandler H W, Akisanya A R, et a1. Finite element modeling of cold isostatic pressing. Journal of European Ceramic Society, 2000, 20(8): 1121-1128.
[9] Foo Y Y, Sheng Y, Briscoe B J, et al. An experimental and numerical study of the compaction of alumina agglomerates. International Journal of Solids and Structures, 2004, 41(21): 5929-5943.
[10] Martin C L, Bouvard D, Shima S, et al. Study of particle rearrangement during powder compaction by the discrete element method. Journal of the Mechanics and Physics of Solids, 2003, 51(4): 667-693.
[11] Frenning G-ran. An efficient finite/discrete element procedure for simulating compression of 3D particle assemblies. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49/50): 4266-4272.
[12] 孙其诚, 王光谦. 颗粒物质力学导论. 北京: 科学出版社, 2009: 3-6.
[13] 李标荣. 电子陶瓷工艺原理. 武昌: 华中工学院出版社, 1986: 39-41.
[14] 陈诺夫. 微重力环境材料科学实验. 自然杂志, 2007, 29(6): 335-337. |