无机材料学报 ›› 2025, Vol. 40 ›› Issue (6): 719-728.DOI: 10.15541/jim20240537

• 研究快报 • 上一篇    下一篇

通过Bi3+自掺杂增强CaBi4Ti4O15基陶瓷压电性能

周阳阳1,2(), 张艳艳1,2, 于子怡1, 傅正钱1, 许钫钫1, 梁瑞虹1, 周志勇1()   

  1. 1.中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 201899
    2.中国科学院大学 材料科学与光电工程中心, 北京 100049
  • 收稿日期:2024-12-26 修回日期:2025-02-17 出版日期:2025-06-20 网络出版日期:2025-02-19
  • 通讯作者: 周志勇, 研究员. E-mail: zyzhou@mail.sic.ac.cn
  • 作者简介:周阳阳(1999-), 男, 博士研究生. E-mail: zhouyangyang21@mails.ucas.ac.cn

Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy

ZHOU Yangyang1,2(), ZHANG Yanyan1,2, YU Ziyi1, FU Zhengqian1, XU Fangfang1, LIANG Ruihong1, ZHOU Zhiyong1()   

  1. 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
    2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-12-26 Revised:2025-02-17 Published:2025-06-20 Online:2025-02-19
  • Contact: ZHOU Zhiyong, professor. E-mail: zyzhou@mail.sic.ac.cn
  • About author:ZHOU Yangyang (1999-), male, PhD candidate. E-mail: zhouyangyang21@mails.ucas.ac.cn
  • Supported by:
    National Natural Science Foundation of China(51932010)

摘要:

高温压电振动传感器是高温、复杂振动等严苛环境下用于结构健康监测的首选传感器。具有高居里温度(TC)的铋层状结构CaBi4Ti4O15(CBT)高温压电陶瓷是500 ℃及以上压电振动传感器的核心元件, 但其压电系数d33低, 极大限制了其高温应用。本研究采用独特的Bi3+自掺杂策略, 提高了CBT压电陶瓷内部晶界数量, 增加了空间电荷的聚集位点, 促进了空间电荷极化的形成。进一步地, 基于空间电荷极化主要在低频下产生的特性, 利用不同频率介电温谱阐明了空间电荷极化提升CBT压电陶瓷压电性能的重要机制。最终获得了综合性能优异的CBT基高温压电陶瓷: TC高达778 ℃; d33提高了30%以上, 达到20.1 pC/N; 电阻率提高了1个数量级(在500 ℃下达到6.33×106 Ω·cm)。本工作为500 ℃及以上压电振动传感器的实际应用提供了性能优异的关键功能材料。

关键词: 高温压电陶瓷, 铋层状结构, 自掺杂, 空间电荷极化, 氧空位

Abstract:

High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations. Bismuth layer-structured CaBi4Ti4O15 (CBT) high-temperature piezoelectric ceramics, with high Curie temperature (TC), are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500 ℃. However, their low piezoelectric coefficient (d33) greatly limits their high-temperature applications. In this work, a novel Bi3+ self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics. The enhancement is attributed to an increase in the number of grain boundaries, providing more sites for space charge accumulation and promoting formation of space charge polarization. Furthermore, given that space charge polarization predominantly occurs at low frequencies, dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics. Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics. Among them, TC reached 778 ℃, d33 increased by more than 30%, reaching 20.1 pC/N, and the electrical resistivity improved by one order of magnitude (reaching 6.33×106 Ω·cm at 500 ℃). These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500 ℃ and above.

Key words: high-temperature piezoelectric ceramic, bismuth layer structure, self-doping, space charge polarization, oxygen vacancy

中图分类号: