[1] |
WU J G, HU Z Q, GAO X Y, et al. Unconventional piezoelectric coefficients in perovskite piezoelectric ceramics. J. Materiomics, 2021, 7(2): 254.
|
[2] |
WEI H G, WANG H, XIA Y J, et al. An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C, 2018, 6(46): 12446.
|
[3] |
DE U, SAHU K R, DE A. Ferroelectric materials for high temperature piezoelectric applications. Solid State Phenom., 2015, 232: 235.
|
[4] |
JIANG X N, KIM K, ZHANG S J, et al. High-temperature piezoelectric sensing. Sensors, 2013, 14(1): 144.
|
[5] |
ZHANG S J, YU F P. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 2011, 94(10): 3153.
|
[6] |
XI J W, CHEN H, TAN Z, et al. Origin of high piezoelectricity in CBT-based Aurivillius ferroelectrics: glide of (Bi2O2)2+ blocks and suppressed internal bias field. Acta Mater., 2022, 237(15): 118146.
|
[7] |
XIE X C, ZHOU Z Y, WANG T Z, et al. High temperature impedance properties and conduction mechanism of W6+-doped CaBi4Ti4O15 Aurivillius piezoceramics. J. Appl. Phys., 2018, 124(20): 204101.
|
[8] |
LIU Y, ZHANG Y H, ZHU L L, et al. Enhanced piezoelectric activity with good thermal stability and improved electrical resistivity in Ta-Mn co-doped CaBi4Ti4O15 high-temperature piezoceramics. Ceram. Int., 2020, 46(14): 22532.
|
[9] |
XI J W, CHEN H, PENG X, et al. Achieving significantly enhanced piezoelectricity in Aurivillius ceramics by improving initial polarization and dielectric breakdown strength. J. Eur. Ceram. Soc., 2023, 43(11): 4757.
|
[10] |
ZHAO L, LI G H, ZHAI X, et al. Enhanced electrical performance in CaBi4Ti4O15 ceramics through synergistic chemical doping and texture engineering. J. Materiomics, 2024, 10(2): 471.
|
[11] |
CHEN H, XI J W, TAN Z, et al. Decoding intrinsic and extrinsic contributions for high piezoelectricity of CBT-based piezoelectric ceramics. J. Mater. Chem. C, 2023, 11(35): 12048.
|
[12] |
DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc., 2005, 88(10): 2663.
|
[13] |
LI Y G, ZHOU Z Y, LIANG R H, et al. A simple Bi3+ self-doping strategy constructing pseudo-tetragonal phase boundary to enhance electrical properties in CaBi2Nb2O9 high-temperature piezoceramics. J. Eur. Ceram. Soc., 2022, 42(6): 2772.
|
[14] |
ZHANG Y H, HUANG P M, ZHU L L, et al. Doping level effects in Nb self-doped Bi3TiNbO9 high-temperature piezoceramics with improved electrical properties. Int. J. Appl. Ceram. Tec., 2020, 17(5): 2407.
|
[15] |
CAO W J, LIN R J, HOU X, et al. Interfacial polarization restriction for ultrahigh energy-storage density in lead-free ceramics. Adv. Funct. Mater., 2023, 33(29): 2301027.
|
[16] |
DUAN C G, MEI W N, YIN W G, et al. Simulations of ferroelectric polymer film polarization: the role of dipole interactions. Phys. Rev. B, 2004, 69: 235106.
|
[17] |
PRODROMAKIS T, PAPAVASSILIOU C. Engineering the Maxwell- Wagner polarization effect. Appl. Surf. Sci., 2009, 255(15): 6989.
|
[18] |
TURIK A V, CHERNOBABOV A I, RADCHENKO G S, et al. Giant piezoelectric and dielectric enhancement in disordered heterogeneous systems. Phys. Solid State, 2004, 46(12): 2213.
|
[19] |
TIAN G, DENG W L, YANG T, et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small, 2023, 19(16): 2207947.
|
[20] |
XIE J, ZHONG J Q, WU C, et al. Enhanced electrical properties related to structural distortion of CaBi2Nb2O9-based piezoelectric ceramics. J. Am. Ceram. Soc., 2019, 102(3): 1287.
|
[21] |
ZOU W, WANG J L, CHEN Z Z, et al. Anisotropic electrical and magnetic properties in grain-oriented Bi4Ti3O12-La0.5Sr0.5MnO3. J. Mater. Chem. C, 2018, 6(42): 11272.
|
[22] |
ZHUK N A, LUTOEV V P, MAKEEV B A, et al. Magnetic susceptibility, EPR, NEXAFS and XPS spectra of Fe-doped CaBi2Nb2O9. J. Mater. Res. Technol., 2020, 9(3): 4173.
|
[23] |
HUSSAIN A, JABEEN N, HASSAN N U, et al. Influence of Mn ions' insertion in pseudo-tetragonal phased CaBi4Ti4O15-based ceramics for highly efficient energy storage devices and high- temperature piezoelectric applications. Int. J. Mol. Sci., 2022, 23(21): 12723.
|
[24] |
YAO Y Y, SONG C H, BAO P, et al. Doping effect on the dielectric property in bismuth titanate. J. Appl. Phys., 2004, 95(6): 3126.
|
[25] |
SUÁREZ D Y, REANEY I M, LEE W E. Relation between tolerance factor and Tc in Aurivillius compounds. J. Mater. Res., 2001, 16(11): 3139.
|
[26] |
CAI K, HUANG C C, GUO D. Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 ℃. J. Phys. D, 2017, 50(15): 111287.
|
[27] |
SUBBARAO E C, MCQUARRIE M C, BUESSEM W R. Domain effects in polycrystalline barium titanate. J. Appl. Phys., 1957, 28(10): 1194.
|
[28] |
GLAZOUNOV A E, HOFFMANN M J. Investigation of domain switching in fractured ferroelectric ceramics by using imaging of X-ray diffraction. J. Eur. Ceram. Soc., 2001, 21(10/11): 1417.
|
[29] |
XIE X C, ZHOU Z Y, GAO B T, et al. Ion-pair engineering- induced high piezoelectricity in Bi4Ti3O12-based high-temperature piezoceramics. ACS Appl. Mater. Interfaces, 2022, 14(12): 14321.
|
[30] |
ZHANG Y Y, KE X C, ZHAO K Y, et al. Ca2+ doping effects on the structural and electrical properties of Na0.5Bi4.5Ti4O15 piezoceramics. Ceram. Int., 2022, 48(21): 31265.
|
[31] |
NIE R, YUAN J, LI W, et al. Microstructure and electric property of (1-x)CaBi4Ti4O15-xBi4Ti3O12 ceramics with high-Curie temperature. J. Mater. Sci. Mater. Electron., 2019, 30: 6482.
|
[32] |
LI L L, YUAN H B, HUANG P M, et al. Enhanced piezoelectricity and excellent thermal stabilities in Nb-Mg co-doped CaBi4Ti4O15 Aurivillius high Curie temperature ceramics. Ceram. Int., 2020, 46(2): 2178.
|
[33] |
XIE X C, ZHOU Z Y, LIANG R H, et al. Superior piezoelectricity in bismuth titanate-based lead-free high-temperature piezoceramics via domain engineering. Adv. Electron. Mater., 2022, 8(7): 2101266.
|
[34] |
ZHANG Y Y, LIANG R H, ZHOU Z Y. Enhanced electrical properties of Cr2O3 addition NBT-based high-temperature piezoelectric ceramics. J. Am. Ceram. Soc., 2023, 106(4): 2357.
|