无机材料学报 ›› 2018, Vol. 33 ›› Issue (3): 251-258.DOI: 10.15541/jim20170265 CSTR: 32189.14.10.15541/jim20170265
所属专题: 钙钛矿材料
• • 下一篇
周志勇, 陈涛, 董显林
收稿日期:
2017-05-27
修回日期:
2017-06-30
出版日期:
2018-03-20
网络出版日期:
2018-03-12
作者简介:
周志勇(1980-), 男, 副研究员. E-mail: zyzhou@mail.sic.ac.cn
基金资助:
ZHOU Zhi-Yong, CHEN Tao, DONG Xian-Lin
Received:
2017-05-27
Revised:
2017-06-30
Published:
2018-03-20
Online:
2018-03-12
About author:
ZHOU Zhi-Yong. E-mail: zyzhou@mail.sic.ac.cn
Supported by:
摘要:
钙钛矿层状压电陶瓷具有超高居里温度和高温度稳定性, 已成为目前高温压电陶瓷的研究热点。本文针对钙钛矿层状压电陶瓷致密化烧结难以及压电性能低的难题, 主要从晶体结构、制备工艺、掺杂改性和复合固溶体等方面总结了钙钛矿层状高温压电陶瓷的研究进展, 同时归纳和比较了不同制备工艺和掺杂改性的钙钛矿层状高温压电陶瓷的烧结性和压电性能。简要分析了钙钛矿层状结构自发极化的来源, 并对未来研究这类材料的铁电相变机理和提高压电性能作了展望。
中图分类号:
周志勇, 陈涛, 董显林. 超高居里温度钙钛矿层状结构压电陶瓷研究进展[J]. 无机材料学报, 2018, 33(3): 251-258.
ZHOU Zhi-Yong, CHEN Tao, DONG Xian-Lin. Research Progress of Perovskite Layer Structured Piezoelectric Ceramics with Super High Curie Temperature[J]. Journal of Inorganic Materials, 2018, 33(3): 251-258.
图1 不同晶体结构压电陶瓷的压电系数d33与居里温度Tc之间的关系
Fig. 1 Relationship between d33 and Curie temperature Tc of piezoceramics with different crystal structures(Inset showing schematic diagrams of perovskite, tungsten bronze, bismuth layer and perovskite layer structures)
PY* | Formula | Structure | Ferroelectric | Ref. |
---|---|---|---|---|
1955 | Cd2Nb2O7 | Pyrochlore | Yes | [17] |
1955 | Ca2Ta2O7 | Pyrochlore | No | [17] |
1955 | Cd2Ta2O7 | Pyrochlore | No | [17] |
1955 | Pb2Ta2O7 | Pyrochlore | No | [17] |
1970 | Ca2Nb2O7 | PLS | Yes | [19] |
1974 | La2Ti2O7 | PLS | Yes | [21] |
1974 | Nd2Ti2O7 | PLS | Yes | [22] |
1975 | Sr2Nb2O7 | PLS | Yes | [23] |
1975 | Sr2Ta2O7 | PLS | Yes | [12] |
1980 | Pr2Ti2O7 | PLS | Yes | [24] |
1980 | Ce2Ti2O7 | Pyrochlore | No | [24] |
1987 | Sm2Ti2O7 | Pyrochlore | No | [25] |
2015 | Ce2Ti2O7 | PLS | Yes | [26] |
表1 A2B2O7型化合物和结构
Table 1 A2B2O7-type compounds and their structures
PY* | Formula | Structure | Ferroelectric | Ref. |
---|---|---|---|---|
1955 | Cd2Nb2O7 | Pyrochlore | Yes | [17] |
1955 | Ca2Ta2O7 | Pyrochlore | No | [17] |
1955 | Cd2Ta2O7 | Pyrochlore | No | [17] |
1955 | Pb2Ta2O7 | Pyrochlore | No | [17] |
1970 | Ca2Nb2O7 | PLS | Yes | [19] |
1974 | La2Ti2O7 | PLS | Yes | [21] |
1974 | Nd2Ti2O7 | PLS | Yes | [22] |
1975 | Sr2Nb2O7 | PLS | Yes | [23] |
1975 | Sr2Ta2O7 | PLS | Yes | [12] |
1980 | Pr2Ti2O7 | PLS | Yes | [24] |
1980 | Ce2Ti2O7 | Pyrochlore | No | [24] |
1987 | Sm2Ti2O7 | Pyrochlore | No | [25] |
2015 | Ce2Ti2O7 | PLS | Yes | [26] |
Compound | Crystal system | Space group | Lattice constants | Cleavage plane | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | β | ||||||
Sr2Nb2O7 | Orthorhombic | Cmc21 | 0.3933 | 2.6726 | 0.5683 | — | (010) | [27] | |
Sr2Ta2O7 | Orthorhombic | Cmc21 | 0.3950 | 2.7270 | 0.5700 | — | (010) | [28] | |
Ca2Nb2O7 | Monoclinic | P21 | 1.3400 | 0.5510 | 0.7720 | 98°17° | (100) | [29] | |
La2Ti2O7 | Monoclinic | P21 | 1.3019 | 0.5547 | 0.7811 | 98°43° | (100) | [21] | |
Nd2Ti2O7 | Monoclinic | P21 | 1.3020 | 0.5480 | 0.7680 | 98°28° | (100) | [22] | |
Pr2Ti2O7 | Monoclinic | P21 | 0.7715 | 0.5488 | 1.3004 | 98°33° | (001) | [30] |
表2 A2B2O7型PLS化合物的晶体特征
Table 2 Crystallographic properties of A2B2O7-type PLS compounds
Compound | Crystal system | Space group | Lattice constants | Cleavage plane | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | β | ||||||
Sr2Nb2O7 | Orthorhombic | Cmc21 | 0.3933 | 2.6726 | 0.5683 | — | (010) | [27] | |
Sr2Ta2O7 | Orthorhombic | Cmc21 | 0.3950 | 2.7270 | 0.5700 | — | (010) | [28] | |
Ca2Nb2O7 | Monoclinic | P21 | 1.3400 | 0.5510 | 0.7720 | 98°17° | (100) | [29] | |
La2Ti2O7 | Monoclinic | P21 | 1.3019 | 0.5547 | 0.7811 | 98°43° | (100) | [21] | |
Nd2Ti2O7 | Monoclinic | P21 | 1.3020 | 0.5480 | 0.7680 | 98°28° | (100) | [22] | |
Pr2Ti2O7 | Monoclinic | P21 | 0.7715 | 0.5488 | 1.3004 | 98°33° | (001) | [30] |
图2 (a)沿a轴和(b)沿c轴方向Sr2Nb2O7晶体结构示意图
Fig. 2 Crystal structure of Sr2Nb2O7 viewed along a (a) and along c (b)Atoms are labelled in accordance with the nomenclature of Ref [23]
图3 (a) Cmcm相La2Ti2O7中最不稳态模式下最大原子位移示意图和(b)理想钙钛矿结构BaTiO3中典型反铁电畸变模式示意图。箭头表示不同y面上与氧位移相关的电偶极矩[34]
Fig. 3 (a) Sketch of the largest atomic displacements associated with the strongest instability mode obtained for the Cmcm phase of La2Ti2O7; (b) Sketch of a typical anti-ferrodistortive mode occurring in an ideal perovskite structure of BaTiO3. The arrows on the side represent the electric dipoles associated to the displacement of oxygens in different y-planes[34]
图4 计算的单斜P21 La2Ti2O7化合物价电子电荷密度。等高线相差为0.05e Å-3 [35]
Fig. 4 Calculated valence-electron charge density for the monoclinic P21 La2Ti2O7. Contour lines differ by 0.05 e Å-3 [35] (1 Å=0.1 nm)
图5 不同工艺在制备的PLS高温压电陶瓷SEM照片
Fig. 5 SEM images of PLS high temperature piezoceramics fabricated with different techniques(a) Sr2Nb2O7 by solid state reaction method[42]; (b) Sr2Nb2O7 by spark plasma sintering[15]; (c) 0.3wt%ZnO-Sr2Nb2O7 by solid state reaction method[41]; (d) Ce2Ti2O7 at 4 GPa, 1100℃[26]
图7 不同温度下热退极化对(1-x)Sr2Nb2O7 -x(Na0.5Bi0.5)TiO3压电陶瓷d33的影响[51]
Fig. 7 Temperature dependence of d33 values of (1-x)Sr2Nb2O7-x(Na0.5Bi0.5)TiO3 piezoceramics after thermal annealing[51]
Materials | Process | Ts/℃ | Density/% | Tc/℃ | d33/(pC/N) | Ref. |
---|---|---|---|---|---|---|
Sr2(Nb1-xTax)2O7 | HF | 1400 | 95 | 823 | 1.6 | [38] |
Sr2-xBaxNb2O7 | SPS | 1200 | 95 | 1175 | 3.6 | [45] |
La2-xCexTi2O7 | SPS | 1400 | 95 | 1440 | 3.9 | [46] |
(Sr1-xCex)2Nb2O7 | SPS | 1350 | 98 | 1327 | 1.5 | [47] |
Sr2(Nb1-xWx)2O7 | SPS | 1425 | 98 | 1308 | — | [47] |
(SmxLa1-x)Ti2O7 | SPS | 1400 | — | 1430 | 2.8 | [48] |
(BixLa1-x)Ti2O7 | SPS | 1350 | 95 | 1395 | 3.6 | [49] |
Sr2Nb2O7-xwt%La2O3 | SSR | 1350 | — | — | — | [43] |
Ca2-xBaxNb2O7 | SSR | 1350 | 95 | 1280 | — | [44] |
Sr2(Nb1-xVx)2O7 | SSR | 1200 | 96 | — | — | [40] |
Sr2Nb2O7-xwt%ZnO | SSR | 1400 | 97 | — | — | [41] |
Sr2Nb2O7-xwt%CuO | SSR | 1180 | 98 | 1342 | 1.1 | [42] |
(1-x)Sr2Nb2O7-xNa0.5Bi0.5TiO3 | SSR | 1420 | 96.8 | 1330 | 1.0 | [51] |
表3 不同方法制备的PLS压电陶瓷的主要性能
Table 3 Characteristics of PLS piezoceramics fabricated via different methods
Materials | Process | Ts/℃ | Density/% | Tc/℃ | d33/(pC/N) | Ref. |
---|---|---|---|---|---|---|
Sr2(Nb1-xTax)2O7 | HF | 1400 | 95 | 823 | 1.6 | [38] |
Sr2-xBaxNb2O7 | SPS | 1200 | 95 | 1175 | 3.6 | [45] |
La2-xCexTi2O7 | SPS | 1400 | 95 | 1440 | 3.9 | [46] |
(Sr1-xCex)2Nb2O7 | SPS | 1350 | 98 | 1327 | 1.5 | [47] |
Sr2(Nb1-xWx)2O7 | SPS | 1425 | 98 | 1308 | — | [47] |
(SmxLa1-x)Ti2O7 | SPS | 1400 | — | 1430 | 2.8 | [48] |
(BixLa1-x)Ti2O7 | SPS | 1350 | 95 | 1395 | 3.6 | [49] |
Sr2Nb2O7-xwt%La2O3 | SSR | 1350 | — | — | — | [43] |
Ca2-xBaxNb2O7 | SSR | 1350 | 95 | 1280 | — | [44] |
Sr2(Nb1-xVx)2O7 | SSR | 1200 | 96 | — | — | [40] |
Sr2Nb2O7-xwt%ZnO | SSR | 1400 | 97 | — | — | [41] |
Sr2Nb2O7-xwt%CuO | SSR | 1180 | 98 | 1342 | 1.1 | [42] |
(1-x)Sr2Nb2O7-xNa0.5Bi0.5TiO3 | SSR | 1420 | 96.8 | 1330 | 1.0 | [51] |
[1] | 董显林. 功能陶瓷研究进展与发展趋势. 中国科学院院刊, 2003, 6: 407-412. |
[2] | LI Y X.Some hot topics in electroceramics research. Journal of Inorganic Materials, 2014, 29(1): 1-5. |
[3] | JIANG X P, KIM K, ZHANG S, et al.High-temperature piezoelectric sensing. Sensors, 2014, 14(1): 144-169. |
[4] | ANTON S R, SODANO H A.A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater. Struct., 2007, 16(3): R1-R21. |
[5] | LEE H J, ZHANG S J, COHEN Y, et al.High temperature, high power piezoelectric composite transducers. Sensors, 2014, 14(8): 14526-14552. |
[6] | ZHANG S J, JIANG X N, LAPSLEY M, et al. Piezoelectric accelerometers for ultrahigh temperature applications. Appl. Phys. Lett., 2010, 96(1): 013506-1-3. |
[7] | ZHANG S J, YU F P.Piezoelectric materials for high temperature sensors. [J]. Am. Ceram. Soc., 2010, 94(10): 3153-3170. |
[8] | NIE R, CHEN Q, LIU H, et al. MnO2-doped (Ca0.4Sr0.6)Bi4Ti4O15 high-temperature piezoelectric ceramics with improved thermal stability. J. Mater. Sci., 2016, 51(11): 5104-5112. |
[9] | 李玉臣, 包绍明, 周志勇, 等.一种高温下稳定使用的铋层状结构压电陶瓷材料及其制备方法. 中国, C04B35/462, ZL200610147892.3. 2007.07.11. |
[10] | ZHOU Z Y, LI Y C, HUI S P, et al. Effect of tungsten doping in bismuth-layered Na0.5Bi2.5Nb2O9 high temperature piezoceramics. Appl. Phys. Lett., 2014, 104(1): 012904-1-4. |
[11] | 周志勇, 李玉臣, 董显林, 等.提高铋层状结构压电陶瓷材料的压电性能以及其温度稳定性的方法. 中国, C04B41/80, ZL201510107721.7. 2015.06.24. |
[12] | NANAMATSU S, KIMURA M, DOI K, et al. Crystallographic and dielectric properties of ferroelectric A2B2O7 (A=Sr, B=Ta, Nb) crystals and their solid solutions. J. Phys. Soc. Jpn., 1975, 38(3): 817-824. |
[13] | GAO Z P, YAN H X, NING H P, et al.Ferroelectricity of Pr2Ti2O7 ceramics with super high Curie point. Adv. Appl. Ceram., 2013, 112(3): 69-74. |
[14] | YAN H X, NING H P, KAN Y, et al.Piezoelectric ceramics with super-high Curie points .[J]. Am. Ceram. Soc., 2009, 92(10): 2270-2275. |
[15] | BRAHMAROUTU B, MESSING G L, TROLIER S.Densification and anisotropic grain growth in Sr2Nb2O7 .[J]. Mater. Sci., 2000, 35(22): 5673-5680. |
[16] | COOK W R, JAFFE H.Ferroelectricity in oxides of fluorite structure. Phys. Rev., 1952, 88(6): 1426. |
[17] | JONA F, SHIRANE G, PEPINSKY R.Dielectric, X-Ray and optical study of ferroelectric Cd2Nb2O7 and related compounds. Phys. Rev., 1955, 98(4): 903-909. |
[18] | ROWLAND J F, BRIGHT N F H, JONGEJAN A. The Crystallography of Compounds in the Calcium Oxide-niobium Pentoxide System. Adv. X-Ray Analysis: Volume 2 Proceedings of the Seventh Annual Conference on Applications of X-Ray Analysis, 1958, 2: 97-106. |
[19] | BALLMAN A A.Growth of piezoelectric and ferroelectric materials by the czochraiski technique .[J]. Am. Ceram. Soc., 1965, 48(2): 112-113. |
[20] | BRANDONAB J K, MEGAWA H D.On the crystal structure and properties of Ca2Nb2O7, “calcium pyroniobate”. Phil. Mag. A, 1970, 21(169): 189-194. |
[21] | NANAMATSU S, KIMURA M, DOI K, et al. A new ferroelectric: La2Ti2O7. Ferroelectrics, 1974, 8(1): 511-513. |
[22] | KIMURA M, NANAMATSU S, KAWAMURA T, et al.Ferroelectric, electrooptic and piezoelectric properties of Nd2Ti2O7 single crystal. Jpn. [J]. Appl. Phys. 1974, 13(9): 1473-1474. |
[23] | ISHIZAWA N, MARUMO F.The crystal structure of Sr2Nb2O7, a compound with perovskite-type slabs. Acta Cryst., 1975, 31(7): 1912-1915. |
[24] | SYCH A M, TITOV Y A, NEDILKO C A.Synthesis and study of ferroelectric compounds with layered structures .[J]. Inorganic Chem., 1980, 25(8): 2056-2061. |
[25] | SYCH A M, TITOV Y A, NEDILKO C A, et al.Study of the conditions for the isovalent substitution of rare-earth atoms in Ln2Ti2O7 with layered structure. [J]. Inorganic Chem., 1987, 32(11): 2625-2628. |
[26] | GAO Z P, LIU L, YAN H X, et al.Cerium titanate (Ce2Ti2O7): a ferroelectric ceramic with perovskite-like layered structure (PLS). J. Am. Ceram. Soc., 2015, 98(12): 3930-3934. |
[27] | NANAMATSU S, KIMURA M, DOI K, et al. Ferroelectric properties of Sr2Nb2O7 single crystal. J. Phys. Soc. Jpn., 1971, 30(1): 300-301. |
[28] | ISHIZAWA N, MARUMO F.Compound with perovskite-type slabs. II. the crystal structure of Sr2Ta2O7. Acta. Cryst., 1976, 32(9): 2564-2566. |
[29] | NANAMATSU S, KIMURA M.Ferroelectric properties of Ca2Nb2O7 single crystal .[J]. Phys. Soc. Jpn., 1971, 36(5): 597-602. |
[30] | PATWE S J, KATARI V, SALKE N P, et al.Structural and electrical properties of layered perovskite type Pr2Ti2O7: experimental and theoretical investigations. J. Mater. Chem. C, 2015, 3(17): 4570-4584. |
[31] | FILIPPETTI A, HILL N A. Coexistence of magnetism and ferroelectricity in perovskites. Phys. Rev. B, 2002, 65(19): 195120- 1-11. |
[32] | BHATTACHARJEE S, BOUSQUET E, GHOSEZ P. Engineering multiferroism in CaMnO3. Phys. Rev. Lett., 2009, 102(11): 117602- 1-4. |
[33] | CATALAN G, SCOTT J F.Physics and applications of bismuth ferrite. Adv. Mater., 2009, 21(24): 2463-2485. |
[34] | JORGE L P, JORGE I. Ab initio study of proper topological ferroelectricity in layered perovskite La2Ti2O7. Phys. Rev. B, 2011, 84(7): 075121-1-13. |
[35] | BRUYER E, SAYEDE A. Density functional calculations of the structural, electronic,ferroelectric properties of high-k titanate Re2Ti2O7 (Re = La and Nd). J. Appl. Phys., 2010, 108(5): 053705- 1-9. |
[36] | BRAHMAROUTU B, MESSING G L, MCKINSTRY S T.Molten salt synthesis of anisotropic Sr2Nb2O7 particles .[J]. Am. Ceram. Soc., 1999, 82(6): 1565-1568. |
[37] | PRASADARAO A V, SELVARAJ U, KOMARNENI S.Sol-Gel synthesis of strontium pyroniobate and calcium pyroniobate .[J]. Am. Ceram. Soc., 1992, 75(10): 2697-2701. |
[38] | FUIERER P A, SHROUT T R, NEWNHAM R E.Physical, electrical, and piezoelectric properties of hot-forged Sr2(NbTa)2O7 ceramics. Mat. Res. Soc. Symp. Proc., 1992, 276: 51-57. |
[39] | GAO Z P, SUZUKI T S, GRASSO S, et al.Highly anisotropic single crystal-like La2Ti2O7 ceramic produced by combined magnetic field alignment and templated grain growth .[J]. Eur. Ceram. Soc., 2015, 35(6): 1771-1776. |
[40] | SERAJI S, WU Y, LIMMER S, et al.Processing and properties of vanadium doped strontium niobate. Mat. Sci. Eng., 2002, 88(1): 73-78. |
[41] | IQBAL Y, MANAN A, SAFEEN M K, et al. ZnO as sintering additive in Sr2Nb2O7. J. Phys.: Conference Series, 2010, 241: 012029-1-4. |
[42] | CHEN T, LIANG R H, JIANG K, et al.Low-temperature sintering and electrical properties of Sr2Nb2O7 piezoceramics by CuO addition .[J]. Am. Ceram. Soc., 2017, 100(6): 2397-2401. |
[43] | FU C, LIU H, CHEN G, et al.Microstructure and electric properties of strontium lanthanum niobate ceramics. Ferroelectrics, 2012, 432(1): 8-13. |
[44] | LI C C, XIANG H C, QIN Y D, et al. Effects of barium substitution on the sintering behavior, dielectric properties of Ca2Nb2O7 ferroelectric ceramics. J. Adv. Diele.2017, 7(2): 1750013-1-5. |
[45] | GAO Z P, NING H P, CHEN C, et al.The effect of barium substitution on the ferroelectric properties of Sr2Nb2O7 ceramics .[J]. Am. Ceram. Soc., 2013, 96(4): 1163-1170. |
[46] | GAO Z P, YAN H X, NING H P, et al.Piezoelectric and dielectric properties of Ce substituted La2Ti2O7 ceramics .[J]. Eur. Ceram. Soc., 2013, 33(5): 1001-1008. |
[47] | NING H P, YAN H X, GAO Z P, et al.Effect of donor dopants cerium and tungsten on the dielectric and electrical properties of high Curie point ferroelectric strontium niobate. Ceram. Int., 2013, 39(7): 7669-7675. |
[48] | CHEN C, GAO Z P, YAN H X, et al.Crystallographic structure and ferroelectricity of (AxLa1-x)2Ti2O7 (A=Sm and Eu) solid solutions with high Tc. J. Am. Ceram. Soc., 2016, 99(2): 523-530. |
[49] | LI C C, XIANG H C, CHEN J W, et al.Phase transition, dielectric relaxation and piezoelectric properties of bismuth doped La2Ti2O7 ceramics. Ceram. Int., 2016, 42(9): 11453-11458. |
[50] | TITOV V V, AKHNAZAROVA V V, REZNITCHENKO L A, et al.Evolution of fractal grain structures in NaNbO3-Ca2Nb2O7 and NaNbO3-Sr2Nb2O7 systems. Ferroelectrics, 2004, 298(1): 335-339. |
[51] | CHEN T, LIANG R H, LI Y C, et al.Structure and electrical properties of perovskite layer (1-x)Sr2Nb2O7-x(Na0.5Bi0.5)TiO3 high- temperature piezoceramics. J. Am. Ceram. Soc., 2017, 100(4): 1065-1072. |
[52] | GAO Z P, LU C J, WANG Y H, et al. Super stable ferroelectrics with high Curie point. Sci. Rep., 2016, 6: 24139-1-6. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||