[1] |
FURUKAWA T, ISHIDA K, FUKADA E. Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. Appl. Phys., 1979, 50(7): 4904.
|
[2] |
WU J, XIAO D, ZHU J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev., 2015, 115(7): 2559.
|
[3] |
BENECH P, DUCHAMP J M. Piezoelectric materials and their applications in radio frequency domain and telecommunications. Adv. Appl. Ceram., 2015, 114(4): 220.
|
[4] |
GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3. Phys. Rev. Lett., 2000, 84(23): 5423.
|
[5] |
YAN Y, CHO K H, PRIYA S. Role of secondary phase in high power piezoelectric PMN-PZT ceramics. J. Am. Ceram. Soc., 2011, 94(12): 4138.
|
[6] |
GRINBERG I, SUCHOMEL M R, DAVIES P K, et al. Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations. J. Appl. Phys., 2005, 98(9): 094111.
|
[7] |
REMA K P, KUMAR V. Structure-property relationship in Mn-doped (Pb0.94Sr0.06)(Zr0.53Ti0.47)O3. J. Am. Ceram. Soc., 2008, 91(1): 164.
|
[8] |
YU X, HOU Y, ZHAO H, et al. Refreshing doping concept in perovskite piezoceramics: composite modulation hidden behind lattice substitution. J. Am. Ceram. Soc., 2020, 103(11): 6378.
|
[9] |
QUANG D A, VUONG L D. Enhanced piezoelectric properties of Fe2O3 and Li2CO3 co-doped Pb[(Zr0.48Ti0.52)0.8(Zn1/3Nb2/3)0.125(Mn1/3Nb2/3)0.075]O3 ceramics for ultrasound transducer applications. J. Sci-Adv. Mater. Dev., 2022, 7(2): 100436.
|
[10] |
ZHENG M, HOU Y, ZHU M, et al. Nanodomains in metal/ ferroelectric0-3 type composites: on the origin of the strong piezoelectric effect. Scripta. Mater., 2018, 145: 19.
|
[11] |
YU X, HOU Y, ZHAO H, et al. The role of secondary phase in enhancing transduction coefficient of piezoelectric energy harvesting composites. J. Mater. Chem. C, 2019, 7(12): 3479.
|
[12] |
KIM S W, LEE H C. Development of PZN-PMN-PZT piezoelectric ceramics with high d33 and Qm values. Materials, 2022, 15(20): 7070.
|
[13] |
LIU Q, SUN Q, MA W, et al. Large-strain 0.7Pb(ZrxTi1-x)O3- 0.1Pb(Zn1/3Nb2/3)O3-0.2Pb(Ni1/3Nb2/3)O3 piezoelectric ceramics for high-temperature application. J. Eur. Ceram. Soc., 2014, 34(5): 1181.
|
[14] |
XU X, FENG X, ZHOU L, et al. Phase structure and electrical properties of 0.28PIN-0.32PZN-(0.4-x)PT-xPZ piezoelectric ceramics. Crystals, 2023, 13(9): 1362.
|
[15] |
WANG H, ZENG K. Humidity effects on domain structure and polarization switching of Pb(Zn1/3Nb2/3)O3-x%PbTiO3 (PZN-x%PT) single crystals. Materials, 2021, 14(9): 2447.
|
[16] |
DU J, YANG C, LI Y, et al. Microstructural, dielectric, piezoelectric and ferroelectric properties of xPZN-PZT ternary ceramics. J. Mater. Sci-Mater. El., 2023, 34(9): 780.
|
[17] |
SUCHOMEL M R, FOGG A M, ALLIX M, et al. Bi2ZnTiO6: a lead-free closed-shell polar perovskite with a calculated ionic polarization of 150 μC·cm-2 Chem. Mater., 2006, 18(21): 4987.
|
[18] |
YAN Y, CHO K H, PRIYA S. Identification and effect of secondary phase in MnO2-doped 0.8Pb(Zr0.52Ti0.48)O3-0.2Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics. J. Am. Ceram. Soc., 2011, 94(11): 3953.
|
[19] |
CAO W W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials. J. Phys. Chem. Solids, 1996, 57(10): 1499.
|
[20] |
LI F, ZHANG S, XU Z, et al. Piezoelectric activity of relaxor- PbTiO3 based single crystals and polycrystalline ceramics at cryogenic temperatures: intrinsic and extrinsic contributions. Appl. Phys. Lett., 2010, 96(19): 192903.
|
[21] |
LI F, ZHANG S, XU Z, et al. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. J. Appl. Phys., 2010, 108(3): 034106.
|
[22] |
ZHENG L, YI X, ZHANG S, et al. Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions. Appl. Phys. Lett., 2013, 103(12): 122905.
|
[23] |
LI L, ZHANG J, WANG R X, et al. Thermally-stable large strain in Bi(Mn0.5Ti0.5)O3 modified 0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3 ceramics. J. Eur. Ceram. Soc., 2019, 39(5): 1827.
|
[24] |
LI L, ZHU M, WEI Q, et al. Microstructure and suppressed thermal depolarisation behaviours of lead-free Na0.5Bi0.5TiO3:ZnO ferroelectric composite ceramics. Adv. Appl. Ceram., 2017, 117(3): 133.
|
[25] |
WANG S, LI X, WANG J, et al. Enhanced electromechanical properties in MnCO3-modified Pb(Ni,Nb)O3-PbZrO3-PbTiO3 ceramics via defect and domain engineering. J. Am. Ceram. Soc., 2022, 106(3): 1970.
|
[26] |
LU X M, HUANG F Z, ZHU J S. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Phys. Sin., 2020, 69(12): 127704.
|
[27] |
XUE H, ZHENG T, WU J. Understanding the nature of temperature stability in potassium sodium niobate based ceramics from structure evolution under external field. ACS Appl. Mater. Inter., 2020, 12(29): 32925.
|
[28] |
LIU Y X, LI Z, THONG H C, et al. Grain size effect on piezoelectric performance in perovskite-based piezoceramics. Acta Phys. Sin., 2020, 69(21): 217704.
|
[29] |
LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun., 2016, 7: 13807.
|
[30] |
LI F, ZHANG S, DAMJANOVIC D, et al. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv. Funct. Mater., 2018, 28(37): 1801504.
|