无机材料学报 ›› 2025, Vol. 40 ›› Issue (6): 729-734.DOI: 10.15541/jim20240463

• 研究快报 • 上一篇    

相界工程和畴工程调控(1-x)(0.8PZT-0.2PZN)-xBZT陶瓷的压电性能

陈相杰(), 李玲(), 雷添福, 王佳佳, 汪尧进()   

  1. 南京理工大学 材料科学与工程学院, 南京 210094
  • 收稿日期:2024-11-04 修回日期:2024-12-10 出版日期:2025-06-20 网络出版日期:2024-12-16
  • 通讯作者: 李 玲, 副教授. E-mail: liling@njust.edu.cn;
    汪尧进, 教授. E-mail: yjwang@njust.edu.cn
  • 作者简介:陈相杰(2000-), 男, 硕士研究生. E-mail: 863979946@qq.com

Enhanced Piezoelectric Properties of (1-x)(0.8PZT-0.2PZN)-xBZT Ceramics via Phase Boundary and Domain Engineering

CHEN Xiangjie(), LI Ling(), LEI Tianfu, WANG Jiajia, WANG Yaojin()   

  1. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2024-11-04 Revised:2024-12-10 Published:2025-06-20 Online:2024-12-16
  • Contact: LI Ling, associate professor. E-mail: liling@njust.edu.cn;
    WANG Yaojin, professor. E-mail: yjwang@njust.edu.cn
  • About author:CHEN Xiangjie (2000-), male, Master candidate. E-mail: 863979946@qq.com
  • Supported by:
    National Natural Science Foundation of China(52202139);National Natural Science Foundation of China(52072178)

摘要: Pb(Zr,Ti)O3-Pb(Zn1/3Nb2/3)O3(PZT-PZN)基陶瓷作为重要的压电材料, 在传感器和执行器等领域具有广泛应用, 优化其压电性能一直是研究热点。本研究旨在通过相界工程和畴工程调控与优化(1-x)[0.8Pb(Zr0.5Ti0.5)O3- 0.2Pb(Zn1/3Nb2/3)O3]-xBi(Zn0.5Ti0.5)O3((1-x)(0.8PZT-0.2PZN)-xBZT)陶瓷的压电性能, 利用不同手段详细表征陶瓷样品的晶相结构和微观形貌。结果显示, 所有样品均具有纯钙钛矿结构, 且加入BZT使晶粒尺寸逐渐增大。研究发现, 加入BZT使陶瓷样品从准同型相界(MPB)向四方相发生变化, 这种相变对于优化压电性能至关重要。通过调控BZT的含量, 精确控制相界位置, 可以优化压电性能。畴结构是影响压电性能的关键因素之一。通过畴工程手段, 优化晶粒尺寸和畴尺寸等, 显著提高了陶瓷样品的压电性能。具体而言, 当x=0.08时, 压电常数d33(320 pC/N)和机电耦合系数kp(0.44)达到最大。结合实验结果和理论分析, 探讨了相界工程和畴工程对压电性能的影响机制, 研究发现加入BZT不仅促进了晶粒生长, 还优化了畴结构, 使得极化反转过程更加容易进行, 从而提高了压电性能。这些研究成果不仅为高性能压电陶瓷的设计提供了新思路, 还为相关电子器件的研制奠定了理论基础。

关键词: 相界, 0.8PZT-0.2PZN, 畴工程, 压电性能

Abstract:

Pb(Zr,Ti)O3-Pb(Zn1/3Nb2/3)O3 (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr0.5Ti0.5)O3-0.2Pb(Zn1/3Nb2/3)O3]-xBi(Zn0.5Ti0.5)O3 ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d33=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.

Key words: phase boundary, 0.8PZT-0.2PZN, domain engineering, piezoelectric property

中图分类号: