无机材料学报

• 研究论文 • 上一篇    下一篇

2D/2D耦合构建ZnIn2S4/TiO2异质结及其增强的光催化还原CO2性能

朱建华1,2, 杨鑫1, 茹凌杰1   

  1. 1.安徽工业大学 冶金减排与资源综合利用教育部重点实验室,马鞍山 243002;
    2.安徽工业大学 低碳冶金与固废资源化利用安徽省重点实验室,马鞍山 243002
  • 收稿日期:2025-03-07 修回日期:2025-08-13
  • 作者简介:朱建华(1978-), 男,副教授. E-mail: zjianhua@ahut.edu.cn
  • 基金资助:
    安徽省自然科学基金(2308085MB66); 安徽省重点研发项目(2022h11020028)

2D/2D Coupled ZnIn2S4/TiO2 Heterojunction and Enhanced Photocatalytic Reduction of CO2

ZHU Jianhua1,2, YANG Xin1, RU Lingjie1   

  1. 1. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Maanshan 243002, China;
    2. Anhui Key Laboratory of Low Carbon Metallurgy and Solid Waste Resource Utilization,Anhui University of Technology, Maanshan 243002, China
  • Received:2025-03-07 Revised:2025-08-13
  • About author:ZHU Jianhua, male, associate professor. E-mail: zjianhua@ahut.edu.cn
  • Supported by:
    Natural Science Foundation of Anhui Province (2308085MB66); Key Research and Development Project of Anhui Province (2022h11020028)

摘要: 二氧化钛(TiO2)作为一种典型的光催化材料,因其优异的化学稳定性、无毒性和低成本等优势,在环境治理和能源转换领域得到了广泛应用。然而,其较宽的带隙结构导致只能吸收紫外光,而且块体材料中光生电子-空穴对的严重复合制约了量子效率。本研究采用水热法构筑了一种新型2D/2D耦合的ZnIn2S4(ZIS)@TiO2复合材料。该异质结构由超薄TiO2纳米笼与片状ZIS纳米片复合而成,具有独特的中空核壳形貌。复合40 mg TiO2纳米笼的ZIS-T20催化剂在400~720 nm宽波长范围内展现出显著增强的光吸收能力。在内建电场的作用下,光生电子无法从ZIS的导带(CB)向TiO2的CB迁移,而空穴从ZIS的价带(VB)转移至TiO2的VB却不受阻碍,这种空间分离效应使得ZIS中保留了具有较高还原电位的电子,克服了传统I型异质结还原电势降低的固有缺陷。在光催化CO2还原(PCR)性能测试中,ZIS@TiO2的催化性能得到显著提升,CO和CH4的生成速率分别达到58.87和12.03 μmol·g-1·h-1,较纯ZIS和TiO2分别提高了6.15和1.96倍,其中CO选择性高达83.03%。该工作不仅为设计高效2D/2D异质结光催化剂提供了新思路,也为深入理解界面电荷转移机制提供了重要参考。

关键词: 2D/2D耦合, TiO2纳米片, 光催化CO2还原, 异质结, ZnIn2S4

Abstract: As a typical photocatalytic material, titanium dioxide (TiO2) has been widely applied in environmental remediation and energy conversion due to its excellent chemical stability, non-toxicity, and low cost. However, its wide bandgap structure restricts light absorption to ultraviolet wavelengths, and the severe recombination of photogenerated electron-hole pairs in bulk materials limits quantum efficiency. A hydrothermal method was used to construct a novel 2D/2D coupled ZnIn2S4 (ZIS)@TiO2 composite material. This heterojunction consists of ultrathin TiO2 nanocages composited with ZIS nanosheets, exhibiting a unique hollow core-shell morphology. ZIS-T20 catalyst with composite 40 mg TiO2 nanocages demonstrates significantly enhanced light absorption across a broad wavelength range of 400-720 nm. Under the influence of the built-in electric field, photo-generated electrons cannot migrate from the conduction band (CB) of ZIS to that of TiO2, whereas the transfer of holes from the valence band (VB) of ZIS to that of TiO2 proceeds unimpeded. This spatial separation effect preserves electrons with high reduction potential in ZIS, overcoming the inherent drawback of reduced redox capability in conventional type-I heterojunctions. In photocatalytic CO2 reduction (PCR) reaction, ZIS@TiO2 exhibits improved performance, achieving CO and CH4 production rates of 58.87 and 12.03 μmol·g-1·h-1, respectively, with CO selectivity as high as 83.03%. Compared to individual components, the CO yield was 6.15 and 1.96 times higher than that of pristine ZnIn2S4 and TiO2, respectively. This work not only provides a new strategy for designing efficient 2D/2D heterojunction photocatalysts, but also offers valuable insights into understanding interfacial charge transfer mechanisms.

Key words: 2D/2D coupling, TiO2 nanosheet, photocatalytic CO2 reduction, heterojunction, ZnIn2S4

中图分类号: