无机材料学报 ›› 2024, Vol. 39 ›› Issue (11): 1212-1220.DOI: 10.15541/jim20240130 CSTR: 32189.14.10.15541/jim20240130
所属专题: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409); 【能源环境】超级电容器(202409)
晁少飞1(), 薛艳辉1, 吴琼1(
), 伍复发1, MUHAMMAD Sufyan Javed2, 张伟3
收稿日期:
2024-03-19
修回日期:
2024-06-18
出版日期:
2024-11-20
网络出版日期:
2024-07-15
通讯作者:
吴 琼, 教授. E-mail: wuqiong9918@126.com作者简介:
晁少飞(2000-), 男, 硕士研究生. E-mail: mxenemax@126.com
基金资助:
CHAO Shaofei1(), XUE Yanhui1, WU Qiong1(
), WU Fufa1, MUHAMMAD Sufyan Javed2, ZHANG Wei3
Received:
2024-03-19
Revised:
2024-06-18
Published:
2024-11-20
Online:
2024-07-15
Contact:
WU Qiong, professor. E-mail: wuqiong9918@126.comAbout author:
CHAO Shaofei (2000-), male, Master candidate. E-mail: mxenemax@126.com
Supported by:
摘要:
二维层状结构MXenes因其优异的电学性能、可调控的表面官能团而被广泛应用于钾离子超级电容器领域, 但其有限的双电容存储容量严重限制了MXenes在电极材料方面的应用。本工作采用“路易斯酸熔盐预刻蚀+液相刻蚀+原位水热复合”策略, 制备了以Ti3C2为基体、表面包覆MnO2的Ti3C2基异质结, 以提高电极材料对钾离子的储存。采用基于密度泛函理论的第一性原理计算方法, 研究了Ti3C2基异质结界面之间的连接方式、电学性质以及钾离子吸附规律的变化。结果表明构建的Ti3C2基异质结对钾离子的最大吸附量是Ti3C2的3倍左右, 且Ti-O-H-O连接通道使MnO2内部的自由电子数量增多, 使Ti3C2基异质结表现出优异的电学性能。三电极体系下的电化学测试结果表明Ti3C2基异质结在1 A·g-1的电流密度下能够提供431 F·g-1的比电容, 远远高于Ti3C2(128 F·g-1)。并通过动力学分析阐述了Ti3C2基异质结的赝电容储能机理, 在100 mV·s-1的扫描速率下, 其赝电容贡献比例高达89%, 此外Ti3C2基异质结表现出较小的电化学阻抗, 从而提高了钾离子传输速率、电子转移速率。本研究通过构筑Ti3C2基异质结, 提高了基体Ti3C2的电化学性能, 并阐述了相应的储能机理, 这为设计其他MXenes基电极材料提供了理论基础。
中图分类号:
晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220.
CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction[J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220.
图1 Ti3C2基异质结的结构与形貌表征
Fig. 1 Structure and morphology characterization of Ti3C2-based heterojunction (a-c) SEM images of (a) Ti3Al-ZnC2, (b) Ti3C2 and (c) Ti3C2-based heterojunction; (d-f) XRD patterns of Ti3Al-ZnC2, Ti3C2 and Ti3C2-based heterojunction; (g) Atomic structure diagram of preparation of Ti3C2 Colorful figures are available on website
图3 Ti3C2基异质结的电化学储钾性能测试
Fig. 3 Electrochemical potassium storage performance tests of Ti3C2-based heterojunction (a) CV curves of Ti3C2 and Ti3C2-based heterojunction in a three-electrode system at a scan rate of 100 mV·s-1; (b) GCD curves of Ti3C2 and Ti3C2-based heterojunction at a current density of 1 A·g-1; (c) GCD curves of Ti3C2-based heterojunction at different current densities; (d) CV curves and (e) GCD curves of Ti3C2-based heterojunction in a double electrode system; (f) Ragone plot of energy density and power density[37⇓⇓⇓⇓⇓⇓-44]; (g, h) Schematic diagrams of two hybrid supercapacitors; (i) Practical application of Ti3C2-based heterojunction hybrid supercapacitors Colorful figures are available on website
图4 Ti3C2基异质结的动力学分析及储能机理
Fig. 4 Dynamic analysis and energy storage mechanism of Ti3C2-based heterojunction (a) CV curves of Ti3C2-based heterojunction at different scanning rates; (b) Relationship between the peak current and the scanning rate at a specific potential; (c) Pseudocapacitance ratio diagram of Ti3C2-based heterojunction at 100 mV·s-1; (d) Pseudocapacitance ratio of Ti3C2-based heterojunction at different scanning rates; (e) EIS plots of Ti3C2-based heterojunction and MnO2; (f) Magnified plots of a region in (e) with inset showing corresponding equivalent circuit; (g) Schematic diagram of mechanism of pseudocapacitance changed with Mn valence Colorful figures are available on website
图5 Ti3C2基异质结和Ti3C2对钾离子的吸附规律
Fig. 5 Adsorption rule of potassium ion on Ti3C2-based heterojunction and bare Ti3C2 Colorful figures are available on website
图6 Ti3C2基异质结的电子能带结构与态密度图
Fig. 6 Electron band structure and state density diagrams of Ti3C2-based heterojunction (a, b) Band structure diagrams of MnO2; (c) DOS diagram of MnO2; (d) PDOS diagrams of Mn and O atoms in MnO2; (e, f) PDOS diagrams of the distribution of electron orbitals of Mn and O atoms in valence and conduction bands; (g) PDOS diagram of each atom in Ti3C2-based heterojunction; (h) PDOS diagrams of Mn and O atoms in valence band of Ti3C2-based heterojunction; (i) PDOS diagrams of Mn and O atoms in conduction band of Ti3C2-based heterojunction with inset showing the band structure diagram of Ti3C2-based heterojunction Colorful figures are available on website
图7 Ti3C2基异质结的差分电荷密度图
Fig. 7 Differential charge density diagrams of Ti3C2-based heterojunction (a-c) 3D top views of differential charge density diagrams of three heterojunctions; (d-f) 3D differential charge density and 2D differential charge density section diagrams of (d) Ti(I), (e) Ti(Ⅱ) and (f) Ti(Ⅲ) connected heterojunction with MnO2 Colorful figures are available on website
[1] | WU Q, XUE Y, CHAO S, et al. Moiré superlattice MXene nanosheets constructed from twisted hexagon-Ti3AlC2 by microwave-assisted Lewis molten salt etching: implications for structural stability in electrochemical energy storage. ACS Applied Nano Materials, 2022, 6(1): 677. |
[2] |
LI S, CHEN J, XIONG J, et al. Encapsulation of MnS nanocrystals into N, S-co-doped carbon as anode material for full cell sodium-ion capacitors. Nano-Micro Letters, 2020, 12: 34.
DOI PMID |
[3] | XU Z, WU M, CHEN Z, et al. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Advanced Science, 2019, 6(12): 1802272. |
[4] | LIANG J, RAWAL A, YU M, et al. Low-potential solid-solid interfacial charging on layered polyaniline anode for high voltage pseudocapacitive intercalation Li-ion supercapacitors. Nano Energy, 2023, 105: 108010. |
[5] | TANG H, YAO J, ZHU Y. Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Advanced Energy Materials, 2021, 11(14): 2003994. |
[6] | LI T, ZHAO H, LI C, et al. Recent progress and prospects in anode materials for potassium-ion capacitors. New Carbon Materials, 2021, 36(2): 253. |
[7] | CUI Y, ZHAO L, LI B, et al. Tailored MoS2 bilayer grafted onto N/S-doped carbon for ultra-stable potassium-ion capacitor. Chemical Engineering Journal, 2022, 450: 137815. |
[8] | ANASORI B, LUKATSKAVA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2: 16098. |
[9] | LUKATSKAVA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2(8): 17105. |
[10] | WAN S, LI X, CHEN Y, et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nature Communications, 2022, 13: 7340. |
[11] | MENG Y, ZENG P, YANG X Y, et al. Simultaneously achieving enhanced water adsorption and rapid adsorbed hydroxyl transfer toward MXene-based materials for highly efficient alkaline electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 466: 143372. |
[12] | LIU L, ZSCHIESCHE H, ANTONIETTI M, et al. Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt. Advanced Energy Materials, 2023, 13(2): 2202709. |
[13] | LI L, CHENG Q F. Recent advances in the high performance MXenes nanocomposites. Journal of Inorganic Materials, 2024, 39(2): 153. |
[14] | WANG X, LI N, YIN J, et al. Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Science China Materials, 2023, 66(1): 272. |
[15] | PAN Z, JIANG Y, YANG P, et al. In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano, 2018, 12(3): 2968. |
[16] | LI K, LI J, ZHU Q, et al. Three-dimensional MXenes for supercapacitors: a review. Small Methods, 2022, 6(4): 2101537. |
[17] |
LU M, HAN W, LI H, et al. There is plenty of space in the MXene layers: the confinement and fillings. Journal of Energy Chemistry, 2020, 48: 344.
DOI |
[18] | LUO J, WANG C, WANG H, et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Advanced Functional Materials, 2019, 29(3): 1805946. |
[19] | ZHAO J, WEN J, XIAO J, et al. Nb2CTx MXene: high capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups. Journal of Energy Chemistry, 2021, 53: 387. |
[20] | TIAN Y, QUE W, LUO Y, et al. Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. Journal of Materials Chemistry A, 2019, 7(10): 5416. |
[21] | ZOU Z, WANG Q, ZHU K, et al. Ultrathin-walled Bi2S3 nanoroll/MXene composite toward high capacity and fast lithium storage. Small, 2022, 18(13): 2106673. |
[22] | CHEN J, REN Y, ZHANG H, et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor. Applied Surface Science, 2021, 562: 150116. |
[23] | TANG H, CHEN W, LI N, et al. Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Materials, 2022, 48: 335. |
[24] | HAN M, YAO J, HUANG J, et al. Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries. Chinese Chemical Letters, 2023, 34(2): 107493. |
[25] | WANG J, GUO W, LIU Z, et al. Engineering of self-aggregation- resistant MnO2 heterostructure with a built-in field for enhanced high-mass-loading energy storage. Advanced Energy Materials, 2023, 13(20): 2300224. |
[26] | DAI Y, ZHANG J, YAN X, et al. Investigating the electrochemical performance of MnO2 polymorphs as cathode materials for aqueous proton batteries. Chemical Engineering Journal, 2023, 471: 144158. |
[27] | LI X L, ZHU J F, JIAO Y H, et al. Manganese dioxide morphology on electrochemical performance of Ti3C2Tx@MnO2 composites. Journal of Inorganic Materials, 2020, 35(1): 119. |
[28] | TANG Y, ZHENG S, XU Y, et al. Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials, 2018, 12: 284. |
[29] | WANG J, WANG J G, LIU H, et al. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7(22): 13727. |
[30] | JABLONSKIENE J, SIMKUNAITE D, VAICIUNIENE J, et al. Synthesis of carbon-supported MnO2 nanocomposites for supercapacitors application. Crystals, 2021, 11(7): 784. |
[31] | CLARK S J, SEGALL M D, PICKAD C J, et al. First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 2005, 220(5/6): 567. |
[32] | YU M, YANG S, WU C, et al. Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization. npj Computational Materials, 2020, 6: 180. |
[33] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19(8): 894.
DOI PMID |
[34] | ZHU X, CAO Z, WANG W, et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS Nano, 2021, 15(2): 2971. |
[35] | WANG D, GAO Y, LIU Y, et al. Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first-principles calculations. Journal of Materials Chemistry A, 2017, 5(47): 24720. |
[36] | XU C, XU B, GU Y, et al. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6(5): 1388. |
[37] | XI S, CHENG X, GAO X, et al. Simple fabrication of Ti3C2/MnO2 composites as cathode material for high capacity and long cycle lifespan Zn-ion batteries. Energy Technology, 2023, 11(7): 2300122. |
[38] | WANG Q, YUAN H, ZHANG M, et al. A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-Co-melamine precursor. ACS Applied Electronic Materials, 2023, 5(5): 2506. |
[39] | YAN S, WANG Q, LUO S, et al. Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium- ion batteries. Journal of Power Sources, 2020, 461: 228151. |
[40] | SI L, XIA Q, LIU K, et al. Hydrothermal synthesis of layered NiS2/Ti3C2Tx composite electrode for supercapacitors. Materials Chemistry and Physics, 2022, 291: 126733. |
[41] | HONG X, DENG C, WANG X, et al. Carbon nanosheets/MnO2/ NiCo2O4 ternary composite for supercapacitor electrodes. Journal of Energy Storage, 2022, 53: 105086. |
[42] | KUNWAR J, ACHARYA D, CHHETRI K, et al. Cobalt oxide decorated 2D MXene: a hybrid nanocomposite electrode for high- performance supercapacitor application. Journal of Electroanalytical Chemistry, 2023, 950: 117915. |
[43] | LUO Y, YANG C, TIAN Y, et al. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes. Journal of Power Sources, 2020, 450: 227694. |
[44] | ZHANG X, ZHANG F, WEI D, et al. Design and synthesis of K-doped tremella-like δ-MnO2 for high-performance supercapacitor. Journal of Energy Storage, 2023, 72: 108468. |
[45] | FENG Y, ZHANG M, YAN H, et al. Microwave-assisted efficient exfoliation of MXene and its composite for high-performance supercapacitors. Ceramics International, 2022, 48(7): 9518. |
[46] | ZHANG Y, CHEN P, WANG Q, et al. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Advanced Energy Materials, 2021, 11(31): 2101712. |
[47] | WEN S, LEE J W, YEO I H, et al. The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochimica Acta, 2004, 50(2/3): 849. |
[48] | SONG L, DUAN Y, ZHANG Y, et al. Promoting defect formation and microwave loss properties in δ-MnO2via Co doping: a first- principles study. Computational Materials Science, 2017, 138: 288. |
[49] | ZHOU Y, ZHOU Z, HU L, et al. A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure. Chemical Engineering Journal, 2022, 438: 135561. |
[50] | XIAO M X, LI M M, SONG E H, et al. Halogenated Ti3C2 MXene as high capacity electrode material for Li-ion batteries. Journal of Inorganic Materials, 2022, 37(6): 660. |
[51] | JIN X, SHIN S J, KIM N, et al. Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy, 2018, 53: 841. |
[1] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
[2] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[3] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[4] | 汤亚, 孙盛睿, 樊佳, 杨庆峰, 董满江, 寇佳慧, 刘阳桥. 粉煤灰衍生水合硅酸钙PEI改性及吸附去除Cu(II)与催化降解有机污染物[J]. 无机材料学报, 2023, 38(11): 1281-1291. |
[5] | 孙鹏, 张绍宁, 毕辉, 董武杰, 黄富强. 基于结构调节碳材料的掺氮种类和含量及其超级电容器储能应用[J]. 无机材料学报, 2021, 36(7): 766-772. |
[6] | 刘芳芳, 传秀云, 杨扬, 李爱军. 氮/硫共掺杂对纤水镁石模板碳纳米管电化学性能的影响[J]. 无机材料学报, 2021, 36(7): 711-717. |
[7] | 李泽晖,谭美娟,郑元昊,骆雨阳,经求是,蒋靖坤,李明杰. 导电金属有机骨架材料在超级电容器中的应用[J]. 无机材料学报, 2020, 35(7): 769-780. |
[8] | 陈钧,马培华,张诚,劳伦·鲁尔曼,吕耀康. 新型多功能无机/有机复合薄膜的制备及电化学性能研究[J]. 无机材料学报, 2020, 35(2): 217-223. |
[9] | 费明婕, 张任平, 朱归胜, 俞兆喆, 颜东亮. 磷酸根掺杂MnFe2O4及其赝电容特性[J]. 无机材料学报, 2020, 35(10): 1137-1141. |
[10] | 丁卓峰, 杨永强, 李在均. 组氨酸功能化碳点/石墨烯气凝胶的制备及超级电容器性能[J]. 无机材料学报, 2020, 35(10): 1130-1136. |
[11] | 马亚楠, 刘宇飞, 余晨旭, 张传坤, 罗时军, 高义华. 不同横向尺寸单层Ti3C2Tx纳米片的制备及其电化学性能研究[J]. 无机材料学报, 2020, 35(1): 93-98. |
[12] | 李腾飞, 黄璐君, 闫旭东, 刘庆雷, 顾佳俊. 碳化钛/椴木多孔碳复合材料用于超级电容器性能的研究[J]. 无机材料学报, 2020, 35(1): 126-130. |
[13] | 张天宇, 崔聪, 程仁飞, 胡敏敏, 王晓辉. 同步氨化/碳化法制备MXene/C平面多孔复合电极[J]. 无机材料学报, 2020, 35(1): 112-118. |
[14] | 许伟佳, 邱大平, 刘诗强, 李敏, 杨儒. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632. |
[15] | 刘伟, 郑凯, 王东红, 雷忆三, 范怀林. Co3O4纳米线阵列@活性炭纤维复合材料的水热合成及电化学应用[J]. 无机材料学报, 2019, 34(5): 487-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||