无机材料学报 ›› 2024, Vol. 39 ›› Issue (11): 1212-1220.DOI: 10.15541/jim20240130 CSTR: 32189.14.10.15541/jim20240130

所属专题: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409) 【能源环境】超级电容器(202409)

• 研究论文 • 上一篇    下一篇

MXene异质结Ti-O-H-O电子快速通道促进高效率储钾

晁少飞1(), 薛艳辉1, 吴琼1(), 伍复发1, MUHAMMAD Sufyan Javed2, 张伟3   

  1. 1.辽宁工业大学 材料科学与工程学院, 锦州 121001
    2.兰州大学 物理科学与技术学院, 兰州 730000
    3.吉林大学 材料科学与工程学院, 汽车材料教育部重点实验室, 吉林省高效清洁能源材料国际合作重点实验室, 电子显微镜中心, 未来科学国际合作联合实验室, 长春 130012
  • 收稿日期:2024-03-19 修回日期:2024-06-18 出版日期:2024-11-20 网络出版日期:2024-07-15
  • 通讯作者: 吴 琼, 教授. E-mail: wuqiong9918@126.com
  • 作者简介:晁少飞(2000-), 男, 硕士研究生. E-mail: mxenemax@126.com
  • 基金资助:
    国家自然科学基金(51971106);辽宁省“揭榜挂帅”科技攻关项目(2023JH1/10400055);辽宁省自然科学基金计划(2024-MS-076);辽宁省教育厅基础科学研究项目(LJKMZ20220961);国家级大学生创新创业训练项目(202310154013)

Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction

CHAO Shaofei1(), XUE Yanhui1, WU Qiong1(), WU Fufa1, MUHAMMAD Sufyan Javed2, ZHANG Wei3   

  1. 1. School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
    2. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
    3. Key Laboratory of Automobile Materials MOE, Jilin Provincial International Cooperation, Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, International Center of Future Science, School of Materials Science & Engineering, Jilin University, Changchun 130012, China
  • Received:2024-03-19 Revised:2024-06-18 Published:2024-11-20 Online:2024-07-15
  • Contact: WU Qiong, professor. E-mail: wuqiong9918@126.com
  • About author:CHAO Shaofei (2000-), male, Master candidate. E-mail: mxenemax@126.com
  • Supported by:
    National Natural Science Foundation of China(51971106);“Open Bidding for Selecting the Best Candidates” Science and Technology Project of Liaoning Province(2023JH1/10400055);Natural Science Foundation of Liaoning Province(2024-MS-076);Basic Scientific Research Project of Higher Education Department of Liaoning Province(LJKMZ20220961);National College Students Innovation and Entrepreneurship Training Program(202310154013)

摘要:

二维层状结构MXenes因其优异的电学性能、可调控的表面官能团而被广泛应用于钾离子超级电容器领域, 但其有限的双电容存储容量严重限制了MXenes在电极材料方面的应用。本工作采用“路易斯酸熔盐预刻蚀+液相刻蚀+原位水热复合”策略, 制备了以Ti3C2为基体、表面包覆MnO2的Ti3C2基异质结, 以提高电极材料对钾离子的储存。采用基于密度泛函理论的第一性原理计算方法, 研究了Ti3C2基异质结界面之间的连接方式、电学性质以及钾离子吸附规律的变化。结果表明构建的Ti3C2基异质结对钾离子的最大吸附量是Ti3C2的3倍左右, 且Ti-O-H-O连接通道使MnO2内部的自由电子数量增多, 使Ti3C2基异质结表现出优异的电学性能。三电极体系下的电化学测试结果表明Ti3C2基异质结在1 A·g-1的电流密度下能够提供431 F·g-1的比电容, 远远高于Ti3C2(128 F·g-1)。并通过动力学分析阐述了Ti3C2基异质结的赝电容储能机理, 在100 mV·s-1的扫描速率下, 其赝电容贡献比例高达89%, 此外Ti3C2基异质结表现出较小的电化学阻抗, 从而提高了钾离子传输速率、电子转移速率。本研究通过构筑Ti3C2基异质结, 提高了基体Ti3C2的电化学性能, 并阐述了相应的储能机理, 这为设计其他MXenes基电极材料提供了理论基础。

关键词: Ti3C2基异质结, 离子吸附, 动力学分析, 钾离子存储, 超级电容器

Abstract:

MXenes with two-dimensional layered structure are widely used in the field of potassium ion supercapacitors because of their excellent electrical properties and adjustable surface functional groups, but their limited dual-capacitor storage capacity severely retards the application of MXenes materials in electrode materials. In this work, the strategy of “Lewis acid molten salt pre-etching + liquid phase etching + in situ hydrothermal recombination” was used to prepare the Ti3C2-based heterojunction with Ti3C2 as matrix and MnO2 coated surface to improve the storage of potassium ions in electrode materials. The connection mode, electrical properties and the change of potassium adsorption law at Ti3C2-based heterojunction interfaces were studied by using the first principles calculation method based on density functional theory. The results show that the maximum adsorption capacity of potassium ions in the constructed Ti3C2-based heterojunction is about 3 times that of Ti3C2. The presence of Ti-O-H-O connecting channel increases the number of free electrons in MnO2, causing Ti3C2-based heterojunction exhibiting excellent electrical properties. The electrochemical test results of the three-electrode system show that, at a current density of 1 A·g-1, Ti3C2-based heterojunction can provide 431 F·g-1 specific capacitance which is much higher than 128 F·g-1 of bare Ti3C2. At a voltage sweep rate of 100 mV·s-1, the contribution of pseudocapacitance is up to 89%. In addition, the Ti3C2-based heterojunction exhibits lower electrochemical impedance, which improves the potassium ion transport rate and electron transfer rate. Therefore, this study demonstrates that the electrochemical performance of Ti3C2 matrix can be improved by constructing Ti3C2-based heterojunction, and the corresponding energy storage mechanism can provide a theoretical basis for the design of other MXenes-based electrode materials.

Key words: Ti3C2-based heterojunction, ion adsorption, kinetic analysis, potassium-ion storage, supercapacitor

中图分类号: