无机材料学报 ›› 2023, Vol. 38 ›› Issue (1): 87-96.DOI: 10.15541/jim20220439 CSTR: 32189.14.10.15541/jim20220439
所属专题: 【能源环境】氢能材料(202409)
王如意1,2(), 徐国良1,2,3, 杨蕾1,2(
), 邓崇海1,2, 储德林4, 张苗5, 孙兆奇5(
)
收稿日期:
2022-07-28
修回日期:
2022-09-25
出版日期:
2023-01-20
网络出版日期:
2022-09-30
通讯作者:
杨 蕾, 副教授. E-mail: ylei531@163.com;作者简介:
王如意(1996-), 男, 硕士研究生. E-mail: 445113000@qq.com
基金资助:
WANG Ruyi1,2(), XU Guoliang1,2,3, YANG Lei1,2(
), DENG Chonghai1,2, CHU Delin4, ZHANG Miao5, SUN Zhaoqi5(
)
Received:
2022-07-28
Revised:
2022-09-25
Published:
2023-01-20
Online:
2022-09-30
Contact:
YANG Lei, associate professor. E-mail: ylei531@163.com;About author:
WANG Ruyi (1996-), male, Master candidate. E-mail: 445113000@qq.com
Supported by:
摘要:
钒酸铋(BVO)可用于光电化学(PEC)水解产氢, 但受限于其缓慢的表面水氧化动力学, 在电极表面修饰单一的析氧助催化剂达不到理想的性能。本工作在BVO电极表面修饰FeNiOx助催化剂可以显著降低起始电压, 增强光电化学性能。此外, 沉积g-C3N4后修饰FeNiOx助催化剂得到的光电极具有更优异的性能。厚度适合的g-C3N4纳米片与BVO构成Ⅱ型p-n异质结, 有效抑制了光生电子空穴的复合, 促进了电极的电荷分离。电化学测试结果表明, 沉积了g-C3N4后, 电极的电荷分离效率达到88.2%, 比BVO/FeNiOx (60.6%)提升了近1.5倍。经过g-C3N4和FeNiOx协同修饰的BVO/g-C3N4/FeNiOx电极, 表面电荷注入效率达到了90.2%, 同时, 在1.23 V (vs. RHE)条件下光电流密度达到4.63 mA∙cm-2, 是纯BVO (1.86 mA∙cm-2)的2.48倍。本工作为开发制备高性能光阳极提供了一种有效的策略。
中图分类号:
王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96.
WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance[J]. Journal of Inorganic Materials, 2023, 38(1): 87-96.
图3 (a) BVO, (b) BVO/g-C3N4, (c) BVO/g-C3N4/FeNiOx 的SEM照片及(d~j)BVO/g-C3N4/FeNiOx的EDS能谱
Fig. 3 Scanning electron microscope (SEM) images of (a) BVO, (b) BVO/g-C3N4, (c) BVO/g-C3N4/FeNiOx, and (d-j) energy dispersive spectrometer (EDS) mappings of BVO/g-C3N4/FeNiOx
图4 BVO/g-C3N4/FeNiOx光阳极的XPS谱图
Fig. 4 X-ray photoelectron spectra (XPS) of BVO/g-C3N4/FeNiOx photoanode (a) Total survey and (b) Bi4f, (c) V2p, (d) O1s, (e) C1s, (f) N1s, (g) Ni2p, (h) Fe2p high resolution spectra
图6 不同光阳极的光电化学性能
Fig. 6 Photoelectrochemical performance of different photoanodes (a) Linear sweep voltammetry (LSV) curves under illumination and (b) corresponding Butler curves; (c) LSV curves in the dark; (d) Open circuit potential (OCP) curves; (e) I-t curves at 1.23 V (vs. RHE); (f) Transient decay time curves Colorful figures are available on website
图7 不同光阳极的(a) UV-Vis图谱, (b) Tauc曲线, (c)电解液含Na2SO3的LSV曲线, (d)ηsep, (e)ηinj和(f) PL光谱
Fig. 7 (a) Ultraviolet and visible (UV-Vis) spectra, (b) Tauc curves, (c) LSV curves with Na2SO3 in electrolyte, (d) bulk charge separation efficiency (ηsep), (e) surface charge injection efficiency (ηinj), and (f) photoluminescence (PL) spectra of different photoanodes Colorful figures are available on website
图8 不同光阳极的(a) ABPE和(b) EIS谱图
Fig. 8 (a) Application bias photon-to-current efficiency (ABPE) and (b) electrochemical impedance spectra (EIS) of photoanodes Colorful figures are available on website
图9 (a)气相色谱测试的BVO/g-C3N4/FeNiOx的析氢、析氧量及法拉第效率, (b) BVO/g-C3N4/FeNiOx的稳定性测试曲线
Fig. 9 (a)Gas evolutions detected by gas chromatography and Faradaic efficiency for BVO/g-C3N4/FeNiOx and (b) stability curve of BVO/g-C3N4/FeNiOx Colorful figures are available on website
[1] |
TAN H L, AMAL R, NG Y H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. Journal of Materials Chemistry A, 2017, 5(32): 16498.
DOI URL |
[2] |
YANG L, YAO C, WANG R, et al. Novel Fe2O3/{101}TiO2 nanosheet array films with stable hydrophobicity and enhanced photoelectrochemical performance. Materials Chemistry and Physics, 2022, 275: 125226.
DOI URL |
[3] |
YANG L, WANG W, ZHANG H, et al. Electrodeposited Cu2O on the {101} facets of TiO2 nanosheet arrays and their enhanced photoelectrochemical performance. Solar Energy Materials and Solar Cells, 2017, 165: 27.
DOI URL |
[4] | WANG S, CHEN P, BAI Y, et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Advanced Materials, 2018, 30(20): 1800486. |
[5] |
XU W, JIA J, WANG T, et al. Continuous tuning of Au-Cu2O Janus nanostructures for efficient charge separation. Angewandte Chemie International Edition, 2020, 59(49): 22246.
DOI URL |
[6] |
ZHANG Q, ZHAI B, LIN Z, et al. Dendritic CuBi2O4 array photocathode coated with conformal TiO2 protection layer for efficient and stable photoelectrochemical hydrogen evolution reaction. Journal of Physical Chemistry C, 2021, 125: 1890.
DOI URL |
[7] |
ZHU Y, REN J, YANG X, et al. Interface engineering of 3D BiVO4/Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5(20): 9952.
DOI URL |
[8] | ROHLOFF M, ANKE B, KASIAN O, et al. Enhanced photoelectrochemical water oxidation performance by fluorine incorporation in BiVO4 and Mo:BiVO4 thin film photoanodes. ACS Applied Materials & Interfaces, 2019, 11(18): 16430. |
[9] |
BAI S, LIU J, CUI M, et al. Two-step electrodeposition to fabricate the p-n heterojunction of a Cu2O/BiVO4 photoanode for the enhancement of photoelectrochemical water splitting. Dalton Transactions, 2018, 47(19): 6763.
DOI URL |
[10] |
HE D, GAO R T, LIU S, et al. Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting. ACS Catalysis, 2020, 10(18): 10570.
DOI URL |
[11] |
FANG G, LIU Z, HAN C. Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. Applied Surface Science, 2020, 515: 146095.
DOI URL |
[12] |
FENG C, ZHOU Q, ZHENG B, et al. Ultrathin NiCo2O4 nanosheets with dual-metal active sites for enhanced solar water splitting of a BiVO4 photoanode. Journal of Materials Chemistry A, 2019, 7(39): 22274.
DOI URL |
[13] | ZHANG J, HUANG Y, LU X, et al. Enhanced BiVO4 photoanode photoelectrochemical performance via borate treatment and a NiFeOx cocatalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(24): 8306. |
[14] |
LU Y, YANG Y, FAN X, et al. Boosting charge transport in BiVO4 photoanode for solar water oxidation. Advanced Materials, 2022, 34(8): 2108178.
DOI URL |
[15] |
LI X, WAN J, MA Y, et al. Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance. Chemical Engineering Journal, 2021, 404: 127054.
DOI URL |
[16] |
ZHANG K, JIN B, PARK C, et al. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019, 10(1): 2001.
DOI PMID |
[17] |
VOLOKH M, PENG G, BARRIO J, et al. Carbon nitride materials for water splitting photoelectrochemical cells. Angewandte Chemie International Edition, 2019, 58(19): 6138.
DOI URL |
[18] |
ZENG G, DENG Y, YU X, et al. Ultrathin g-C3N4 as a hole extraction layer to boost sunlight-driven water oxidation of BiVO4- based photoanode. Journal of Power Sources, 2021, 494: 229701.
DOI URL |
[19] |
WANG Q, WANG W, ZHONG L, et al. Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Applied Catalysis B: Environmental, 2018, 220: 290.
DOI URL |
[20] |
ZENG G, WANG X, YU X, et al. Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation. Journal of Power Sources, 2019, 444: 227300.
DOI URL |
[21] |
LIANG Z, GE X, LIU J. An amorphous FeNiOx thin film obtained by anodic electrodeposition as an electrocatalyst toward the oxygen evolution reaction. New Journal of Chemistry, 2019, 43(48): 19422.
DOI URL |
[22] |
HOU Y, ZUO F, DAGG A P, et al. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26(29): 5043.
DOI URL |
[23] |
CHEN Z, LI Y, TIAN F, et al. Synthesis of BiVO4/g-C3N4 S-scheme heterojunction via a rapid and green microwave route for efficient removal of glyphosate. Separation and Purification Technology, 2022, 287: 120507.
DOI URL |
[24] |
WANG Y, YU D, WANG W, et al. Synthesizing Co3O4-BiVO4/ g-C3N4 heterojunction composites for superior photocatalytic redox activity. Separation and Purification Technology, 2020, 239: 116562.
DOI URL |
[25] |
REDDY D A, REDDY K A J, GOPANNAGARI M, et al. Exposure of NiFe-LDH active sites by cation-exchange to promote photoelectrochemical water splitting performance. Applied Surface Science, 2021, 570: 151134.
DOI URL |
[26] |
FENG C, WANG Z, MA Y, et al. Ultrathin graphitic C3N4 nanosheets as highly efficient metal-free cocatalyst for water oxidation. Applied Catalysis B: Environmental, 2017, 205: 19.
DOI URL |
[27] |
GAO R T, WU L, LIU S, et al. Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions. Journal of Materials Chemistry A, 2021, 9(10): 6298.
DOI URL |
[28] |
KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343: 990.
DOI URL |
[29] |
WANG L, WU F, CHEN X, et al. Defective metal-organic framework assisted with nitrogen doping enhances the photoelectrochemical performance of BiVO4. ACS Applied Energy Materials, 2021, 4(11): 13199.
DOI URL |
[30] |
YUE P, SHE H, ZHANG L, et al. Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Applied Catalysis B: Environmental, 2021, 286: 119875.
DOI URL |
[31] |
LU X, YE K H, ZHANG S, et al. Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chemical Engineering Journal, 2022, 428: 131027.
DOI URL |
[32] | GAO R T, WANG L. Stable co-catalyst-free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition. Angewandte Chemie International Edition, 2020, 132(51): 23294. |
[33] |
YANG J W, PARK I J, LEE S A, et al. Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Applied Catalysis B: Environmental, 2021, 293: 120217.
DOI URL |
[34] |
PAN J B, WANG B H, WANG J B, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angewandte Chemie International Edition, 2021, 60(3): 1433.
DOI URL |
[35] |
GAO R T, LIU S, GUO X, et al. Pt-induced defects curing on BiVO4 photoanodes for near-threshold charge separation. Advanced Energy Materials, 2021, 11(45): 2102384.
DOI URL |
[36] |
GAO R T, LIU X, ZHANG X, et al. Steering electron transfer using interface engineering on front-illuminated robust BiVO4 photoanodes. Nano Energy, 2021, 89: 106360.
DOI URL |
[37] |
ZHOU T, WANG J, CHEN S, et al. Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 267: 118599.
DOI URL |
[1] | 张亚萍,雷宇轩,丁文明,于濂清,朱帅霏. 双铁电复合材料的制备及其光电化学性能研究[J]. 无机材料学报, 2020, 35(9): 987-992. |
[2] | 许世超,朱天哲,乔阳,白学健,唐楠,郑春明. Z型BiVO4/GO/g-C3N4复合材料的制备及其可见光下催化性能[J]. 无机材料学报, 2020, 35(7): 839-846. |
[3] | 李杰,宋晨飞,逄显娟. 可见光催化剂钒酸铋的可控合成及性能研究[J]. 无机材料学报, 2019, 34(2): 164-172. |
[4] | 刘国聪, 金 真, 张喜斌, 李险峰, 刘 鸿. Cu掺杂BiVO4微米片的水热合成和光催化性能[J]. 无机材料学报, 2013, 28(3): 287-292. |
[5] | 高晓明, 付 峰, 武玉飞, 张理平, 李稳宏. Co-BiVO4光催化剂的制备及其用于光催化氧化噻吩[J]. 无机材料学报, 2012, 27(10): 1073-1078. |
[6] | 李 丽, 雷静果, 嵇天浩, 张希鹏. 负载有立方相p-型半导体Cu1.8S颗粒的TiO2纳米带制备与表征[J]. 无机材料学报, 2012, 27(1): 38-44. |
[7] | 郭 佳, 朱 毅, 张渊明, 李明玉, 杨 骏. 不同结构形貌BiVO4的水热制备及可见光催化性能[J]. 无机材料学报, 2012, 27(1): 26-32. |
[8] | 陈 渊, 周科朝, 黄苏萍, 李志友, 刘国聪. 水热法制备Cu掺杂可见光催化剂BiVO4及其光催化性能研究[J]. 无机材料学报, 2012, 27(1): 19-25. |
[9] | 肖 奇, 高 兰, 张 响. 高可见光响应型单斜介孔BiVO4的合成与表征[J]. 无机材料学报, 2011, 26(12): 1256-1260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||