无机材料学报 ›› 2022, Vol. 37 ›› Issue (12): 1329-1336.DOI: 10.15541/jim20220166 CSTR: 32189.14.10.15541/jim20220166
收稿日期:
2022-03-23
修回日期:
2022-07-04
出版日期:
2022-12-20
网络出版日期:
2022-07-08
作者简介:
陈士昆(1965-), 男, 教授. E-mail: chshk3478@163.com
基金资助:
CHEN Shikun(), WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin
Received:
2022-03-23
Revised:
2022-07-04
Published:
2022-12-20
Online:
2022-07-08
About author:
CHEN Shikun (1965-), Male, professor. E-mail: chshk3478@163.com
Supported by:
摘要:
光催化降解水体中的有机污染物具有广阔的应用前景。本研究以CoFe1.95Sm0.05O4作为载体, 通过原位沉积法和光还原法制备了Z型异质结Ag2S/Ag/CoFe1.95Sm0.05O4, 采用不同表征手段对样品的微观形貌、物相结构、光学和磁学性能进行表征分析。Ag2S/Ag/CoFe1.95Sm0.05O4复合物催化活性最高, 其光催化降解动力学常数(k)分别是Ag2S/Ag, Ag2S和CoFe1.95Sm0.05O4的2.96, 3.71和8.24倍。引入CoFe1.95Sm0.05O4可以有效地促进Ag2S/Ag中光生载流子的分离效率。•O2-和 •OH-是光催化过程中的主要活性物。此外, 在光催化反应后, 外加磁场可以将制备的Ag2S/Ag/CoFe1.95Sm0.05O4复合材料快速从溶液中分离出来。循环降解实验显示, Ag2S/Ag/CoFe1.95Sm0.05O4复合材料在光降解过程中具有稳定的降解能力和晶体结构。本研究为进一步开发高效、窄带隙和磁性的光催化剂提供了有效的解决思路。
中图分类号:
陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336.
CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property[J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336.
图3 不同样品的XPS全谱图(a); Ag2S/Ag/CoFe1.95Sm0.05O4复合材料Ag3d(b), S2p(c), Co2p(d), Fe2p(e), Sm3d(f)和O2p(g)的XPS谱图
Fig. 3 XPS survey spectra of different materials (a); Ag3d(b); S2p(c); Co2p (d); Fe2p(e); Sm3d (f) and O2p (g) XPS spectra of Ag2S/Ag/CoFe1.95Sm0.05O4
图5 不同样品可见光催化降解MO(a, c)和一级动力学曲线(b, d)
Fig. 5 Degradation curves of MO by different samples under visible light irradiation (a, c) and corresponding first-order kinetics (b, d)
图6 样品的磁化曲线 (插图为外部磁场分离后的溶液的照片) (a), 样品对甲基橙降解的循环性能曲线(b)和循环试验前后Ag2S/Ag/CoFe1.95Sm0.05O4的XRD谱图(c)
Fig. 6 Magnetization curves of samples with inset showing the pictures of the solution after magnetic separation using an external magnetic (a), five cycling runs of the sample for MO degradation (b) and XRD patterns of Ag2S/Ag/CoFe1.95Sm0.05O4 before and after cyclic test (c)
图7 Ag2S/Ag/CoFe1.95Sm0.05O4光催化自由基捕获降解(a), 样品的莫特-肖特基曲线(b), Ag2S, CoFe1.95Sm0.05O4的XPS价带谱图 (c,d), 制备样品的EIS图谱(e) 和Ag2S/Ag/CoFe1.95Sm0.05O4光催化MO降解机理图(f)
Fig. 7 Photocatalytic degradation of Ag2S/Ag/CoFe1.95Sm0.05O4 by free radical capture (a), Mott-Schottky curves of samples (b), Valence-band XPS spectra of Ag2S, CoFe1.95Sm0.05O4 (c,d), EIS spectra of as-prepared samples (e), and the proposed photocatalytic degradation mechanism of MO over Ag2S/Ag/CoFe1.95Sm0.05O4(f)
[1] |
SOLAKIDOU M, GIANNAKAS A, GEORGIOU Y, et al. Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N, F-TiO2: interplay between CdS photocorrosion and TiO2-dopping. Applied Catalysis B: Environmental, 2019, 254: 194-205.
DOI URL |
[2] |
CHI C C, QU P P, REN C N, et al. Preparation of SiO2@Ag@SiO2@TiO2 core-shell structure and its photocatalytic degradation. Journal of Inorganic Materials, 2022, 37(7): 750-756.
DOI URL |
[3] |
ZHANG X, ZHANG C, JIANG W J, et al. Synthesis, electronic structure and visible-light catalytic performance of quaternary BiMnVO5. Journal of Inorganic Materials, 2022, 37(1): 58-64.
DOI |
[4] | IKRAM S, ASHRAF F, ALZAID M, et al. Role of nature of rare earth ion dopants on structural, spectral, and magnetic properties in spinel ferrites. Journal of Superconductivity and Novel Magnetism, 2021, 34: 17451751. |
[5] |
CHEN S K, JIANG D C, ZENG G, et al. Dysprosium doped CoFe2O4with enhanced magnetic property and photodegradation activity of methyl orange. Materials Letters, 2021, 284: 128966.
DOI URL |
[6] |
HAGIRI M, UCHIDA K, SASAKI M K, et al. Preparation and characterization of silver orthophosphate photocatalytic coating on glass substrate. Scientific Reports, 2021, 11(1): 13968.
DOI PMID |
[7] |
MOHD T K, ABDULLAH A, MOHD S, et al. Effect of Ag2S nanoparticles on optical,photophysical and electrical properties of P3HT thin films. Luminescence, 2021, 36(3): 761-768.
DOI URL |
[8] |
JIANG W, WU Z M, YUE X N, et al. Photocatalytic performance of Ag2S under irradiation with visible and near-infrared light and its mechanism of degradation. RSC Advances, 2015, 5(31): 24064-24071.
DOI URL |
[9] |
ZHAO W, DAI B L, ZHU F X, et al. A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities. Applied Catalysis B: Environmental, 2018, 229: 171-180.
DOI URL |
[10] | PRADYASTI A, KIM D H, BIUTTY M N, et al. Ag-Ag2S hybrid nanoplates with unique heterostructures: facile synthesis and photocatalytic application. Journal of Alloys and Compounds, 2020, 8926: 154191. |
[11] | PENG C, WU Z J. Preparation of α-Fe2O3/ZnFe2O4 composite powder and its photocatalytic degradation of methylene blue. Journal of Process Engineering, 2016, 16(5): 882-888. |
[12] |
ZENG Q H, ZHU Y M, TIAN W, et al. Recyclable CoFe2O4-Ag2O magnetic photocatalyst and its visible light-driven photocatalytic performance. Research on Chemical Intermediates, 2017, 43: 4487-4502.
DOI URL |
[13] |
SUN F J, ZENG Q H, TIAN W, et al. Magnetic MFe2O4-Ag2O (M = Zn, Co, & Ni) composite photocatalysts and their application for dye wastewater treatment. Journal of Environmental Chemical Engineering, 2019, 7(2): 103011.
DOI URL |
[14] |
ŠUTKA A, DÖBELIN N, JOOST U, et al. Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation. Journal of Environmental Chemical Engineering, 2017, 5(4): 3455-3462.
DOI URL |
[15] |
GAN L, XU L J, QIAN K. Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic dyes. Materials and Design, 2016, 109: 354-360.
DOI URL |
[16] |
FARHADI S, SIADATNASAB F. CoFe2O4/CdS nanocomposite: Preparation, characterization, and application in sonocatalytic degradation of organic dye pollutants. Chinese Journal of Catalysis, 2016, 37(9): 1487-1495.
DOI URL |
[17] |
HE Y M, ZHANG L H, TENG B T, et al. New Application of Z-Scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environmental Science and Technology, 2015, 49(1): 649-656.
DOI URL |
[18] |
LIU C, LIU F, HUANG F, et al. Preparation and photocatalytic properties of alga-based CDs-Cu-TiO2 composite material. Journal of Inorganic Materials, 2021, 36 (11):1154-1162.
DOI URL |
[19] |
XU Y G, ZHOU T, HUANG S Q, et al. Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability. RSC Advances, 2015, 5(52): 41475-41483.
DOI URL |
[20] |
LI J T, CUSHING S K, ZHENG P, et al. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. Journal of the American Chemical Society, 2014, 136(23): 8438-8449.
DOI URL |
[21] |
WANG Z P, LIN Z P, SHEN S J, et al. Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42(5): 710-730.
DOI URL |
[22] |
HOU Y H, HUANG Y L, HOU S J, et al. Structural, electronic and magnetic properties of RE3+-doping in CoFe2O4: a first-principles study. Journal of Magnetism and Magnetic Materials, 2017, 421: 300-305.
DOI URL |
[23] |
HE D L, CHEN Y F, SITU Y, et al. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: an integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light. Applied Surface Science, 2017, 425: 862-872.
DOI URL |
[24] |
SHEN X F, YANG J Y, ZHENG T, et al. Plasmonic p-n heterojunction of Ag/Ag2S/Ag2MoO4 with enhanced vis-NIR photocatalytic activity for purifying wastewater. Separation and Purification Technology, 2020, 251: 117347.
DOI URL |
[25] |
ZHAO W, GUO Y, WANG S M, et al. A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2015, 165: 335-343.
DOI URL |
[26] | JING H X, GAO M X, WANG X M, et al. Preparation and absorption properties of rare earth Ce3+ doped CoFe2O4 nanoparticles. Journal of Materials Research, 2018, 32(6): 449-454. |
[27] |
LIU Y, CHEN J J, ZHANG J F, et al. Z-scheme BiVO4/Ag/Ag2S composites with enhanced photocatalytic efficiency under visible light. RSC Advances, 2020, 10: 30245-30253.
DOI URL |
[28] |
LIU Y, ZHANG T H, LI S S, et al. Geometric and electronic modification of the active Fe3+ sites of α-Fe2O3 for highly efficient toluene combustion. Journal of Hazardous Materials, 2020, 398: 123233.
DOI URL |
[29] |
HELENA BRUNCKOVA, MARIA KANUCHOVA, HRISTO KOLEV, et al. XPS characterization of SmNbO4 and SmTaO4 precursors prepared by Sol-Gel method. Applied Surface Science, 2019, 473: 1-5.
DOI URL |
[30] |
LI X Z, ZHANG Z S, YAO C, et al. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization. Applied Surface Science, 2016, 364: 589-596.
DOI URL |
[31] | SADOVNIKOV S I, GUSEV A I. Recent progress in nanostructured silver sulfide: from synthesis and nonstoichiometry to properties. Journal of Materials Chemistry, 2017, 5: 17617-17704. |
[32] |
BAI S, WANG L, LI Z, et al. Facet-engineered surface and interface design of photocatalytic materials. Advanced Science, 2017, 4: 1600216.
DOI URL |
[33] | SUN G S, XU H, LI X M, et al. Fabrication and characterization of visible-light induced photocatalyst Gd2O3/Ag3VO4. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99: 471-484. |
[34] |
LIU C H, ZHOU Z D, YU X, et al. Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles. Inorganic Materials, 2008, 44(3): 291-295.
DOI URL |
[35] |
LI X, KANG B, DONG F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-p CN/ WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy, 2021, 81: 105671.
DOI URL |
[36] |
CHEN F F, WU C Y, WANG J N, et al. Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co3O4 separately on {010} and {110} facets of BiVO4: pre-separation channel and hole-sink effects. Applied Catalysis B: Environmental, 2019, 250: 31-41.
DOI URL |
[37] |
DENG J M, XUE R T, HUANG C Y, et al. Preparation of Z-scheme Ag/AgBr/BiOBr composite photocatalyst for effective removal of organic pollutants. Chemical Physics, 2021, 548: 111228.
DOI URL |
[38] |
XIONG J, LI X B, HUANG J T, et al. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Applied Catalysis B: Environmental, 2020, 266: 118602.
DOI URL |
[39] |
TANG H, FU Y H, CHANG S F, et al. Construction of Ag3PO4/ Ag2MoO4 Z-cheme heterogeneous photocatalyst for the remediation of organic pollutants. Chinese Journal of Catalysis, 2017, 38: 337-347.
DOI URL |
[40] |
LI L, WANG X, LAN Y, et al. Synthesis, photocatalytic and electrocatalytic activities of wormlike GdFeO3 nanoparticles by a glycol-assisted Sol-Gel process. Industrial & Engineering Chemistry Research, 2013, 52: 9130-9136.
DOI URL |
[1] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[2] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
[3] | 蔡苗, 陈子航, 曾实, 杜江慧, 熊娟. CuS纳米片修饰Bi5O7I复合材料用于光催化还原Cr(VI)水溶液[J]. 无机材料学报, 2021, 36(6): 665-672. |
[4] | 刘彩, 刘芳, 黄方, 王晓娟. 海藻基CDs-Cu-TiO2复合材料的制备及其光催化性能[J]. 无机材料学报, 2021, 36(11): 1154-1162. |
[5] | 徐晶威,李政,王泽普,于涵,何祺,付念,丁帮福,郑树凯,闫小兵. 交错能带结构钕掺杂钒酸铋形貌与光催化性能调控[J]. 无机材料学报, 2020, 35(7): 789-795. |
[6] | 许世超,朱天哲,乔阳,白学健,唐楠,郑春明. Z型BiVO4/GO/g-C3N4复合材料的制备及其可见光下催化性能[J]. 无机材料学报, 2020, 35(7): 839-846. |
[7] | 季邦, 赵文锋, 段洁利, 马立哲, 付兰慧, 杨洲. 泡沫镍网负载TiO2/WO3薄膜对乙烯的光催化降解[J]. 无机材料学报, 2020, 35(5): 581-588. |
[8] | 李佳艳, 蔡敏, 武晓玮, 谭毅. 多晶硅太阳能电池片的回收再利用研究[J]. 无机材料学报, 2018, 33(9): 987-992. |
[9] | 曲晓飞, 刘鲁英, 李雪钦, 杜芳林. Er3+掺杂TiO2空心球的制备及其光催化性能研究[J]. 无机材料学报, 2015, 30(2): 183-188. |
[10] | 赵昀云, 徐华蕊,朱归胜. 水热法制备海绵钛负载 TiO2 膜[J]. 无机材料学报, 2011, 26(2): 155-158. |
[11] | 王维清,冯启明,董发勤,李虎杰,赵晓东. Fe3O4/斜发沸石磁性复合材料的制备及其性能[J]. 无机材料学报, 2010, 25(4): 401-405. |
[12] | 何 燕, 王 攀, 邓安平, 杨 静, 黄应平, 杨 勇. 反相胶束介质制备纳米CdS及可见光降解孔雀绿[J]. 无机材料学报, 2010, 25(11): 1221-1227. |
[13] | 张耀君,张 莉. 复合材料CdS/Al-HMS的制备及可见光催化降解污染物制氢活性研究[J]. 无机材料学报, 2008, 23(1): 66-70. |
[14] | 周武艺,曹庆云,唐绍裘,刘英菊. 硫掺杂纳米 TiO2的掺杂机理及可见光催化活性的研究[J]. 无机材料学报, 2006, 21(4): 776-782. |
[15] | 侯亚奇,张弓,庄大明,吴敏生. 中频交流反应溅射TiO2薄膜制备及光催化性能研究[J]. 无机材料学报, 2004, 19(5): 1073-1079. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||