无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 321-329.DOI: 10.15541/jim20230408 CSTR: 32189.14.10.15541/jim20230408
叶茂森1(), 王耀1(
), 许冰1, 王康康1, 张胜楠2, 冯建情2
收稿日期:
2023-09-08
修回日期:
2023-11-20
出版日期:
2024-03-20
网络出版日期:
2023-11-22
通讯作者:
王耀, 副教授. E-mail: wyspacestar@aliyun.com作者简介:
叶茂森(1998-), 男, 硕士. E-mail: 1076712450@qq.com
基金资助:
YE Maosen1(), WANG Yao1(
), XU Bing1, WANG Kangkang1, ZHANG Shengnan2, FENG Jianqing2
Received:
2023-09-08
Revised:
2023-11-20
Published:
2024-03-20
Online:
2023-11-22
Contact:
WANG Yao, associate professor. E-mail: wyspacestar@aliyun.comAbout author:
YE Maosen (1998-), male, Master. E-mail: 1076712450@qq.com
Supported by:
摘要:
构建异质结能够有效抑制光催化剂中光生电子和空穴的快速复合。本研究采用水热法、煅烧法以及溶剂热法合成了II/Z型Bi2MoO6/Ag2O/Bi2O3异质结光催化剂, 利用不同研究手段分析材料的组成、形貌以及光电化学性能。结果发现, 复合材料的最佳组成为25%ABOBM (Ag2O/Bi2O3和Bi2MoO6的质量比为1 : 4)。在可见光照射下25%ABOBM对四环素(TC)的降解效率可达85.6%, 明显高于Ag2O/Bi2O3和Bi2MoO6, 而且三次循环实验后仍具有良好的稳定性。25%ABOBM光催化性能的提高可归因于Ag2O、Bi2O3以及Bi2MoO6之间异质结的构建和特殊形貌的形成。自由基捕获实验和电子顺磁共振谱(EPR)结果表明, h+和·O2-在TC的降解过程中发挥着主要作用, 而·OH和1O2发挥着次要作用。实验还探索了相关光催化机理, 并利用液相色谱-质谱联用仪(LC-MS)对TC可能的降解路径进行了分析。本研究为双异质结光催化剂的制备及其在有机污染物降解应用方面提供了新的思路。
中图分类号:
叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329.
YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation[J]. Journal of Inorganic Materials, 2024, 39(3): 321-329.
图1 不同样品的XRD图谱(a)及XPS表征(b~f)
Fig. 1 XRD patterns (a) and XPS characterization (b-f) of different samples (b) Survey; (c) Bi4f; (d) O1s; (e) Ag3d; (f) Mo3d
图2 AgBiO3 (a)、BO (b)、ABO (c)、BM (d)以及25%ABOBM (e, f)的SEM照片; 25%ABOBM的HRTEM照片(g, h)和元素分布图(i)
Fig. 2 SEM images of AgBiO3 (a), BO (b), ABO (c), BM (d), and 25%ABOBM (e, f); HRTEM images (g, h) and elemental mappings (i) of 25%ABOBM
图3 BO、ABO、BM以及25%ABOBM的紫外-可见漫反射光谱(a); BO和BM的Tauc曲线(b)
Fig. 3 UV-Vis DRS of BO, ABO, BM, and 25%ABOBM (a); Tauc curves of BO and BM (b) Colorful figures are available on website
图4 不同材料对TC的降解曲线
Fig. 4 Degradation curves of TC over different materials (a) ABO, BM, and different ratios of ABOBM composites; (b) Different materials systems
图6 自由基捕获实验(a), EPR光谱中DMPO-•O2-的信号(b)和DMPO-•OH的信号(c)
Fig. 6 Free radical capture experiments (a), signals of DMPO-•O2- (b) and DMPO-•OH (c) in EPR spectra
图7 ABO、BM和25%ABOBM的光电流响应曲线(a)、EIS图谱(b)及其PL曲线(c), BO(d)和BM(e)的M-S图谱
Fig. 7 Photocurrent response curves (a), EIS plots (b) and PL curves (c) of ABO, BM, and 25%ABOBM, M-S diagrams of BO (d) and BM (e) Colorful figures are available on websites
图8 25%ABOBM降解TC的光催化机理
Fig. 8 Possible photocatalytic mechanisms of 25%ABOBM in degradation of TC (a) Traditional II/I type heterojunction; (b) Ⅱ/Z-type tandem heterojunction
图S1 25%ABOBM在可见光下降解TC的循环实验(a)和循环测试前后的XRD图谱(b)
Fig. S1 Cyclic experiment of 25%ABOBM degradation of TC under visible light irradiation (a) and XRD patterns of 25%ABOBM before and after cycling test (b)
TPs | Retention time/min | m/z | Potential structure | |
---|---|---|---|---|
TC | 6.73 | 445 | | |
P1 | 6.83 | 417 | | |
P2 | 4.52 | 342 | | |
P3 | 1.88 | 227 | | |
P4 | 1.35 | 158 | | |
P5 | 11.02 | 413 | | |
P6 | 5.8 | 399 | | |
P7 | 15.68 | 346 | | |
P8 | 0.71 | 192 | | |
P9 | 11.02 | 476 | | |
P10 | 12.67 | 340 | | |
P11 | 7.99 | 171 | | |
P12 | 4.89 | 114 | | |
P13 | 9.07 | 111 | | |
P14 | 2.63 | 85 | | |
P15 | 2.63 | 60 | |
表S1 可见光照射下25%ABOBM光催化降解TC的中间产物
Table S1 Intermediate products in the TC photocatalytic degradation by 25%ABOBM under visible light irradiation
TPs | Retention time/min | m/z | Potential structure | |
---|---|---|---|---|
TC | 6.73 | 445 | | |
P1 | 6.83 | 417 | | |
P2 | 4.52 | 342 | | |
P3 | 1.88 | 227 | | |
P4 | 1.35 | 158 | | |
P5 | 11.02 | 413 | | |
P6 | 5.8 | 399 | | |
P7 | 15.68 | 346 | | |
P8 | 0.71 | 192 | | |
P9 | 11.02 | 476 | | |
P10 | 12.67 | 340 | | |
P11 | 7.99 | 171 | | |
P12 | 4.89 | 114 | | |
P13 | 9.07 | 111 | | |
P14 | 2.63 | 85 | | |
P15 | 2.63 | 60 | |
[1] |
ZHANG S X, ZHANG Q Q, LIU Y S, et al. Emission and fate of antibiotics in the Dongjiang River Basin, China: implication for antibiotic resistance risk. Science of The Total Environment, 2020, 712: 136518.
DOI URL |
[2] |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the River Basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015, 49(11): 6772.
DOI URL |
[3] |
HUO S, GAO W, ZHOU P, et al. Magnetic porous carbon composites for rapid and highly efficient degradation of organic pollutants in water. Advanced Powder Materials, 2022, 1(3): 100028.
DOI URL |
[4] |
SHI J L, CHEN R, HAO H, et al. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angewandte Chemie International Edition, 2020, 59(23): 9088.
DOI URL |
[5] |
XU H, XIE J, JIA W, et al. The formation of visible light-driven Ag/Ag2O photocatalyst with excellent property of photocatalytic activity and photocorrosion inhibition. Journal of Colloid and Interface Science, 2018, 516: 511.
DOI URL |
[6] |
SONG M, QI K, WEN Y, et al. Rational design of novel three-dimensional reticulated Ag2O/ZnO Z-scheme heterojunction on Ni foam for promising practical photocatalysis. Science of The Total Environment, 2021, 793: 148519.
DOI URL |
[7] |
REN X, CHEN R, DING S, et al. Preparation and photocatalytic performance of a magnetically recyclable ZnFe2O4@TiO2@Ag2O p-n/Z-type tandem heterojunction photocatalyst: degradation pathway and mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130604.
DOI URL |
[8] |
LI K, LI S, ZHANG J, et al. Preparation and stabilization of γ-Bi2O3 photocatalyst by adding surfactant and its photocatalytic performance. Materials Research Express, 2017, 4(6): 065902.
DOI URL |
[9] |
ZHANG J, HU Y, JIANG X, et al. Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. Journal of Hazardous Materials, 2014, 280: 713.
DOI URL |
[10] |
HUANG Y, ZHOU G, QIN J, et al. LiBiO2/Bi2O3 semiconductor heterojunctions with facile preparation and actively optical performances. Powder Technology, 2020, 362: 690.
DOI URL |
[11] |
WANG X, ZHANG J, WANG R, et al. Stable all-solid-state Z-scheme heterojunction Bi2O3-Co3O4@C microsphere photocatalysts for recalcitrant pollutant degradation. Journal of Alloys and Compounds, 2023, 940: 168915.
DOI URL |
[12] |
YU H, JIANG L, WANG H, et al. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review. Small, 2019, 15(23): 1901008.
DOI URL |
[13] |
WANG D, SHEN H, GUO L, et al. La and F co-doped Bi2MoO6 architectures with enhanced photocatalytic performance via synergistic effect. RSC Advances, 2016, 6(75): 71052.
DOI URL |
[14] |
SUN K, ZHOU H, LI X, et al. The novel 2-dimensional Bi2MoO6- Bi2O3-Ag3PO4 ternary photocatalyst with n-n-p heterojunction for enhanced degradation performance. Journal of Alloys and Compounds, 2022, 913: 165119.
DOI URL |
[15] |
GAO Q, WANG Z, LI J, et al. Facile synthesis of ternary dual Z-scheme g-C3N4/Bi2MoO6/CeO2 photocatalyst with enhanced 4-chlorophenol removal: degradation pathways and mechanism. Environmental Pollution, 2022, 315: 120436.
DOI URL |
[16] |
WU Y, SONG M, CHAI Z, et al. Assembling Bi2MoO6/Ru/g-C3N4 for highly effective oxygen generation from water splitting under visible-light irradiation. Inorganic Chemistry, 2019, 58(11): 7374.
DOI URL |
[17] |
XU X, MENG L, DAI Y, et al. Bi spheres SPR-coupled Cu2O/Bi2MoO6 with hollow spheres forming Z-scheme Cu2O/Bi/Bi2MoO6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II). Journal of Hazardous Materials, 2020, 381: 120953.
DOI URL |
[18] |
CHEN Y, ZHU G, HOJAMBERDIEV M, et al. Three-dimensional Ag2O/Bi5O7I p-n heterojunction photocatalyst harnessing UV-Vis-NIR broad spectrum for photodegradation of organic pollutants. Journal of Hazardous Materials, 2018, 344: 42.
DOI URL |
[19] |
MAJHI D, SAMAL P K, DAS K, et al. α-NiS/Bi2O3 nanocomposites for enhanced photocatalytic degradation of tramadol. ACS Applied Nano Materials, 2019, 2(1): 395.
DOI URL |
[20] |
LI Y, WANG H, HUANG L, et al. Promoting LED light driven photocatalytic inactivation of bacteria by novel β-Bi2O3@BiOBr core/shell photocatalyst. Journal of Alloys and Compounds, 2020, 816: 152665.
DOI URL |
[21] |
LI J, LIU X, SUN Z, et al. Novel Bi2MoO6/TiO2 heterostructure microspheres for degradation of benzene series compound under visible light irradiation. Journal of Colloid and Interface Science, 2016, 463: 145.
DOI URL |
[22] |
LIU Y, LI P, XUE R, et al. Research on catalytic performance and mechanism of Ag2O/ZnO heterostructure under UV and visible light. Chemical Physics Letters, 2020, 746: 137301.
DOI URL |
[23] |
LI S J, WANG C C, LIU Y P, et al. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: performance, mechanism insight and toxicity assessment. Chemical Engineering Journal, 2022, 429: 132519.
DOI URL |
[24] |
XU J J, LIU C, NIU J F, et al. Preparation of In2S3 nanosheets decorated KNbO3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation. Separation and Purification Technology, 2020, 230: 115861.
DOI URL |
[25] |
XU Q, ZHAO P, SHI Y K, et al. Preparation of a g-C3N4/Co3O4/ Ag2O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism. New Journal of Chemistry, 2020, 44(16): 6261.
DOI URL |
[26] |
MENG X R, YANG Y Z, ZHANG L P, et al. Preparation and visible light catalytic degradation of magnetically recyclable ZnFe2O4/BiOBr flower-like microspheres. Journal of Alloys and Compounds, 2023, 954: 169981.
DOI URL |
[27] |
KUBIAK A, BIELAN Z, KUBACKA M, et al. Microwave- assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Applied Surface Science, 2020, 520: 146344.
DOI URL |
[28] |
HU Y, CHEN D Z, ZHANG R, et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. Journal of Hazardous Materials, 2021, 419: 126495.
DOI URL |
[29] |
GUO F, HUANG X L, CHEN Z H, et al. Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater. Chemical Engineering Journal, 2020, 395: 125118.
DOI URL |
[30] |
ZHANG X, REN B, LIU B M, et al. High-efficiency removal of tetracycline by carbon-bridge-doped g-C3N4/Fe3O4 magnetic heterogeneous catalyst through photo-Fenton process. Journal of Hazardous Materials, 2021, 418: 126333.
DOI URL |
[31] | 孙利娇. 改性AgInS2的制备及其在光催化、荧光、光电化学检测中的应用. 大理: 大理大学硕士论文, 2023. |
[32] |
LI L, GUO C, SHEN J, et al. Construction of sugar-gourd-shaped CdS/Co1-xS hollow hetero-nanostructure as an efficient Z-scheme photocatalyst for hydrogen generation. Chemical Engineering Journal, 2020, 400: 125925.
DOI URL |
[33] |
TANG M L, AO Y H, WANG P F, et al. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation. Journal of Hazardous Materials, 2020, 387: 121713.
DOI URL |
[1] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[2] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[3] | 王兆阳, 秦鹏, 蒋胤, 冯小波, 杨培志, 黄富强. 三明治结构钌插层二氧化钛光催化四环素降解性能研究[J]. 无机材料学报, 2024, 39(4): 383-389. |
[4] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[5] | 张淑敏, 奚晓雯, 孙磊, 孙平, 王德强, 魏杰. 基于声动力和类酶活性的铌基涂层: 抗菌及促进细胞增殖与分化[J]. 无机材料学报, 2024, 39(10): 1125-1134. |
[6] | 胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023, 38(9): 1055-1061. |
[7] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[8] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[9] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[10] | 马润东, 郭雄, 施凯旋, 安胜利, 王瑞芬, 郭瑞华. MoS2/g-C3N4 S型异质结的构建及光催化性能研究[J]. 无机材料学报, 2023, 38(10): 1176-1182. |
[11] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[12] | 王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96. |
[13] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[14] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[15] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||