无机材料学报 ›› 2024, Vol. 39 ›› Issue (2): 162-170.DOI: 10.15541/jim20230400 CSTR: 32189.14.10.15541/jim20230400
所属专题: 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
收稿日期:
2023-09-01
修回日期:
2023-09-28
出版日期:
2023-10-07
网络出版日期:
2023-10-07
通讯作者:
韩美康, 青年研究员. E-mail: mkhan@fudan.edu.cn;作者简介:
巴 坤(1989-), 男, 博士. E-mail: kun_ba@fudan.edu.cn
基金资助:
BA Kun1(), WANG Jianlu1,2(
), HAN Meikang2(
)
Received:
2023-09-01
Revised:
2023-09-28
Published:
2023-10-07
Online:
2023-10-07
Contact:
HAN Meikang, professor. E-mail: mkhan@fudan.edu.cn;About author:
BA Kun (1989-), male, PhD. E-mail: kun_ba@fudan.edu.cn
Supported by:
摘要:
MXene是一大类二维过渡金属碳氮化合物, 其丰富的组分、二维原子层结构、金属电导和活性表面等特性使其与不同波段的电磁波(可见光、红外、太赫兹、微波波段等)产生独特的相互作用, 并衍生了多种电磁功能应用。在红外波段, MXene具有宽域的红外辐射特性, 活性表面使其具备可调的红外吸收。近年来, MXene的上述性质引起了广泛研究兴趣。本文首先对不同MXene组分的本征红外辐射特性及调控策略进行了系统总结, 并简要介绍其代表性红外应用, 重点讨论MXene在这些应用中的贡献和作用机制, 包括红外识别/伪装、表面等离激元、光热转换、红外光电探测等。最后, 对MXene红外功能应用的未来发展方向进行了展望。
中图分类号:
巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170.
BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene[J]. Journal of Inorganic Materials, 2024, 39(2): 162-170.
图1 MXene的红外辐射特性
Fig. 1 Infrared radiation properties of MXene (a) Schematic of infrared reflection and emission with MXene[18]; (b) Absorptance/emissivity spectra of Ti3C2Tx film at visible and infrared ranges[23]; (c) Room-temperature infrared emissivity spectra of different MXene coatings at wavelength range of 1-25 μm[18]; (d) Relationship between average infrared emissivity (8-14 μm) and electrical conductivity of MXene coatings[18]
图2 MXene的红外识别/伪装应用
Fig. 2 Infrared identification/camouflage with MXenes (a) Infrared thermal image of MXene, graphene, stainless steel, graphene oxide, and montmorillonite films on an object at 508 ℃[27]; (b) Infrared thermal images of security flower[28]; (c) Visible and (d) infrared images of different MXene coatings on a hot plate at 70 ℃, showing the identification capability of MXenes due to their varying colors and infrared emissivity[18]; (e) Infrared camera images of the patterned device before and after local near infrared (NIR) irradiation to demonstrate information encryption and display applications[29]
图3 MXene的表面等离激元应用
Fig. 3 Surface plasmon of MXene (a) Electronenergy loss spectroscopy (EELS) analysis of a Ti3C2Tx flake[33]; (b) EELS fitted intensity maps of the corresponding surface plasmon modes and inherent interband transition sustained by the flake at the energy losses[33]; (c) Schematic of Ti3C2Tx based nanodisks array[34]; (d) Improvement of absorption spectra of patterned Ti3C2Tx film[34]
图4 MXene的光热转换应用
Fig. 4 Photothermal conversion with MXene (a) Schematic of photothermal energy conversion and storage of the PEG/Ti3C2Tx composites[42]; (b) Temperature evolution curves of the composites under the simulated sunlight irradiation[42]; (c) Temperature change of the coated crystal with the increasing power of infrared radiation[43]; (d) Time-dependent temperature increase of the surface of the composites upon illumination with infrared light (744 mW) at 25 ℃[43]; (e) Temperature elevations at the tumor sites of 4T1-tumor-bearing mice under different treatments during laser irradiation[39]; (f) Time-dependent tumor growth curves after different treatments[39]
图5 MXene的红外光电探测应用
Fig. 5 Infrared photodetection with MXene (a) Structural diagram of Ti3C2Tx-RAN photodetector[49]; (b) Dynamic optical response curves of Au-RAN and Ti3C2T-RAN photodetector with insets showing optical photos of the device[49]; (c) Schematic of the MAPbI3/Nb2CTx photodiode[50]; (d) Responsivity and detectivity of the MAPbI3/Nb2CTx photodiode under different white light intensities[50]
[1] |
VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372(6547): eabf1581.
DOI URL |
[2] |
DING H M, LI M, LI Y B, et al. Progress in structural tailoring and properties of ternary layered ceramics. Journal of Inorganic Materials, 2023, 38(8): 845.
DOI URL |
[3] |
BA K, PU D, YANG X, et al. Billiard catalysis at Ti3C2 MXene/ MAX heterostructure for efficient nitrogen fixation. Applied Catalysis B: Environmental, 2022, 317: 121755.
DOI URL |
[4] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633.
DOI URL |
[5] |
MATTHEWS K, ZHANG T, SHUCK C E, et al. Guidelines for synthesis and processing of chemically stable two-dimensional V2CTx MXene. Chemistry of Materials, 2021, 34(2): 499.
DOI URL |
[6] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248.
DOI URL |
[7] |
SHEKHIREV M, SHUCK C E, SARYCHEVA A, et al. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science, 2021, 120: 100757.
DOI URL |
[8] |
LI X, HUANG Z, SHUCK C E, et al. MXene chemistry, electrochemistry and energy storage applications. Nature Review Chemistry, 2022, 6(6): 389.
DOI |
[9] |
HAN M, MALESKI K, SHUCK C E, et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. Journal of the American Chemical Society, 2020, 142(45): 19110.
DOI PMID |
[10] | LI M, HUANG Q. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. Journal of Inorganic Materials, 2020, 35(1): 1. |
[11] |
XU X, GUO T, LANZA M, et al. Status and prospects of MXene-based nanoelectronic devices. Matter, 2023, 6(3): 800.
DOI URL |
[12] |
LIPATOV A, LU H, ALHABEB M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, 2018, 4(6): eaat0491.
DOI URL |
[13] |
ZHANG D, SHAH D, BOLTASSEVA A, et al. MXenes for photonics. ACS Photonics, 2022, 9(4): 1108.
DOI URL |
[14] |
MAUCHAMP V, BUGNET M, BELLIDO E P, et al. Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Physical Review B, 2014, 89(23): 235428.
DOI URL |
[15] |
ZHAO T, XIE P, WAN H, et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5-10 THz band. Nature Photonics, 2023, 17(7): 622.
DOI |
[16] |
HAN M, ZHANG D, SHUCK C E, et al. Electrochemically modulated interaction of MXenes with microwaves. Nature Nanotechnology, 2023, 18 (4): 373.
DOI PMID |
[17] |
HAN M, GOGOTSI Y. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204: 17.
DOI URL |
[18] |
HAN M, ZHANG D, SINGH A, et al. Versatility of infrared properties of MXenes. Materials Today, 2023, 64: 31.
DOI URL |
[19] |
YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials, 2020, 32(9): 1906769.
DOI URL |
[20] |
UZUN S, HAN M, STROBEL C J, et al. Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon, 2021, 174: 382.
DOI URL |
[21] |
ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications. Advanced Materials, 2020, 32(21): 1908486.
DOI URL |
[22] |
YUN T, LEE G S, CHOI J, et al. Multidimensional Ti3C2Tx MXene architectures via interfacial electrochemical self-assembly. ACS Nano, 2021, 15 (6): 10058.
DOI URL |
[23] |
LI Y, XIONG C, HUANG H, et al. 2D Ti3C2Tx MXenes: visible black but infrared white materials. Advanced Materials, 2021, 33(41): 2103054.
DOI URL |
[24] |
LU F, SHI D, TAN P, et al. A novel infrared electrochromic device based on Ti3C2Tx MXene. Chemical Engineering Journal, 2022, 450: 138324.
DOI URL |
[25] |
DILLON A D, GHIDIU M J, KRICK A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 2016, 26(23): 4162.
DOI URL |
[26] |
HAN M, SHUCK C E, SINGH A, et al. Efficient microwave absorption with Vn+1CnTx MXenes. Cell Reports Physical Science, 2022, 3(10): 101073.
DOI URL |
[27] |
LI L, SHI M, LIU X, et al. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Advanced Functional Materials, 2021, 31(35): 2101381.
DOI URL |
[28] |
DENG Z, LI L, TANG P, et al. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano, 2022, 16(10): 16976.
DOI PMID |
[29] |
CAI G, CIOU J H, LIU Y, et al. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Science Advances, 2019, 5(7): eaaw7956.
DOI URL |
[30] |
CHEN Y H, LI J, REN M L, et al. Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/ dielectric interfaces. Applied Physics Letters, 2011, 98(26): 261912.
DOI URL |
[31] |
BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824.
DOI |
[32] | COLIN-ULLOA E, FITZGERALD A, MONTAZERI K, et al. Ultrafast spectroscopy of plasmons and free carriers in 2D MXenes. Advanced Materials, 2023, 35(8): e2208659. |
[33] |
EL-DEMELLAWI J K, LOPATIN S, YIN J, et al. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 2018, 12(8): 8485.
DOI URL |
[34] |
CHAUDHURI K, ALHABEB M, WANG Z, et al. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics, 2018, 5(3): 1115.
DOI URL |
[35] | GHOUSSOUB M, XIA M, DUCHESNE P N, et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy & Environmental Science, 2019, 12(4): 1122. |
[36] |
ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation. Nature Reviews Materials, 2020, 5(5): 388.
DOI |
[37] | ZHANG B, GU Q, WANG C, et al. Self-assembled hydrophobic/ hydrophilic porphyrin-Ti3C2Tx MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Applied Materials & Interfaces, 2021, 13(3): 3762. |
[38] |
ZHANG B, WONG P W, GUO J, et al. Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nature Communications, 2022, 13: 3315.
DOI |
[39] |
LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 2017, 139(45): 16235.
DOI PMID |
[40] |
CHENG P, WANG D, SCHAAF P. A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications. Advanced Sustainable Systems, 2022, 6(9): 2200115.
DOI URL |
[41] |
XU D, LI Z, LI L, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 2020, 30(47): 2000712.
DOI URL |
[42] |
FAN X, LIU L, JIN X, et al. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 2019, 7(23): 14319.
DOI URL |
[43] |
YANG X, LAN L, LI L, et al. Collective photothermal bending of flexible organic crystals modified with MXene-polymer multilayers as optical waveguide arrays. Nature Communications, 2023, 14: 3627.
DOI |
[44] |
XI D, XIAO M, CAO J, et al. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy. Advanced Materials, 2020, 32(11): 1907855.
DOI URL |
[45] |
ZHAO X, WANG L Y, TANG C Y, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and Joule heating for healthcare and medical therapy applications. ACS Nano, 2020, 14(7): 8793.
DOI URL |
[46] |
BA K, WANG J. Advances in solution-processed quantum dots based hybrid structures for infrared photodetector. Materials Today, 2022, 58: 119.
DOI URL |
[47] |
ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays. Journal of Applied Physics, 2009, 105(9): 091101.
DOI URL |
[48] |
TANG J, WAN H, CHANG L, et al. Tunable infrared sensing properties of MXenes enabled by intercalants. Advanced Optical Materials, 2022, 10(17): 2200623.
DOI URL |
[49] |
HU C, CHEN H, LI L, et al. Ti3C2Tx MXene-RAN van der Waals heterostructure-based flexible transparent NIR photodetector array for 1024 pixel image sensing application. Advanced Materials Technologies, 2022, 7(7): 2101639.
DOI URL |
[50] |
LIU Z, EL-DEMELLAWI J K, BAKR O M, et al. Plasmonic Nb2CTx MXene-MAPbI3 heterostructure for self-powered visible-NIR photodiodes. ACS Nano, 2022, 16(5): 7904.
DOI URL |
[51] |
MALESKI K, SHUCK C E, FAFARMAN A T, et al. The broad chromatic range of two-dimensional transition metal carbides. Advanced Optical Materials, 2020, 9(4): 2001563.
DOI URL |
[52] |
HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation. Nature Communications, 2019, 10: 522.
DOI |
[53] |
NGUYEN T T, MURALI G, PATEL M, et al. MXene-integrated metal oxide transparent photovoltaics and self-powered photodetectors. ACS Applied Energy Materials, 2022, 5(6): 7134.
DOI URL |
[54] |
XU H, REN A, WU J, et al. Recent advances in 2D MXenes for photodetection. Advanced Functional Materials, 2020, 30(24): 2000907.
DOI URL |
[1] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[2] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[3] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[4] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. |
[5] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[6] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[7] | 陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214. |
[8] | 丁浩明, 陈科, 李勉, 李友兵, 柴之芳, 黄庆. 无机材料的“化学剪刀”结构编辑策略[J]. 无机材料学报, 2024, 39(2): 115-128. |
[9] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[10] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[11] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[12] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[13] | 郑嘉乾, 卢霄, 鲁亚杰, 王迎军, 王臻, 卢建熙. 医用生物陶瓷的功能性生物适配机制及应用[J]. 无机材料学报, 2024, 39(1): 1-16. |
[14] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[15] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||