无机材料学报 ›› 2024, Vol. 39 ›› Issue (2): 204-214.DOI: 10.15541/jim20230503 CSTR: 32189.14.10.15541/jim20230503
所属专题: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
收稿日期:
2023-10-31
修回日期:
2023-12-15
出版日期:
2023-12-19
网络出版日期:
2023-12-19
通讯作者:
支春义, 教授. E-mail: cy.zhi@cityu.edu.hk作者简介:
陈 泽(1993-), 男, 博士. E-mail: ze.chen@cityu.edu.hk
基金资助:
Received:
2023-10-31
Revised:
2023-12-15
Published:
2023-12-19
Online:
2023-12-19
Contact:
ZHI Chunyi, professor. E-mail: cy.zhi@cityu.edu.hkAbout author:
CHEN Ze (1993-), male, PhD. E-mail: ze.chen@cityu.edu.hk
摘要:
可充电锌离子电池(ZIBs)以其低成本、固有安全性、高比能量和环保特性而在大规模储能领域中引起了极大的关注。尽管对ZIBs的正极、负极以及电解质的研究不断取得突破, ZIBs的实际性能仍难以达到实用化的要求, 关键在于缺少先进材料的开发。MXene作为一种新型的二维材料, 具有各种优异的特性包括丰富的原料、可定制的结构和独特的理化特性。二维(2D)MXene在ZIBs中的应用已经取得了重大进展。本文简要总结了用于ZIBs的MXene的多种合成路线、MXene的环境稳定性、形态和结构特征以及化学性质的进展; 详细阐述了MXene基阴极、阳极和电解质/隔膜的最新发展, 丰富的成果表明MXene材料具有实现高性能ZIBs的巨大潜力; 归纳探讨了增强基于MXene的 ZIBs性能的策略, 包括离子插层调控、表面接枝修饰、杂原子掺杂、层间距拓宽等; 最后, 提出了基于MXene的ZIBs面临的挑战, 展望了未来前景, 旨在为开发实用化MXene基储能器件指明方向。
中图分类号:
陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214.
CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects[J]. Journal of Inorganic Materials, 2024, 39(2): 204-214.
图1 MXene的制备示意图以及典型的熔融盐合成法
Fig. 1 Schematic illustration of preparing MXene (a) Process of chemical etching[22]; (b) Molten salt method for TiN-based MXene preparation[29]; (c) CuCl2 Lewis molten salt for MXene preparation[32]
Material | Capacity/(mAh·g-1) | Voltage/V(vs. Zn2+/Zn) | Capacity retention | Ref. | |
---|---|---|---|---|---|
Cathode | MnO2 | 258 | 1.3 | 94%(2000 cycles) | [ |
V2O5 | 470 | 0.75 | 91%(4000 cycles) | [ | |
ZnHCF | 65 | 1.75 | 81%(100 cycles) | [ | |
I2 | 174 | 1.15 | 90%(3000 cycles) | [ | |
S | 1105 | 0.5 | 85%(50 cycles) | [ | |
Se | 611 | 1.2 | 80%(1000 cycles) | [ | |
Te | 420 | 0.6 | 82%(500 cycles) | [ | |
Anode | TiS2 | 140 | 0.3 | 74%(100 cycles) | [ |
Zn2Mo6S8 | 62.3 | 0.35 | 81%(10 cycles) | [ | |
Cu2-xSe | 230 | 0.45 | 96%(20000 cycles) | [ |
表1 ZIBs中典型的正极和负极材料的电化学性能汇总
Table 1 Summary of the typical cathodes and anodes materials in ZIBs
Material | Capacity/(mAh·g-1) | Voltage/V(vs. Zn2+/Zn) | Capacity retention | Ref. | |
---|---|---|---|---|---|
Cathode | MnO2 | 258 | 1.3 | 94%(2000 cycles) | [ |
V2O5 | 470 | 0.75 | 91%(4000 cycles) | [ | |
ZnHCF | 65 | 1.75 | 81%(100 cycles) | [ | |
I2 | 174 | 1.15 | 90%(3000 cycles) | [ | |
S | 1105 | 0.5 | 85%(50 cycles) | [ | |
Se | 611 | 1.2 | 80%(1000 cycles) | [ | |
Te | 420 | 0.6 | 82%(500 cycles) | [ | |
Anode | TiS2 | 140 | 0.3 | 74%(100 cycles) | [ |
Zn2Mo6S8 | 62.3 | 0.35 | 81%(10 cycles) | [ | |
Cu2-xSe | 230 | 0.45 | 96%(20000 cycles) | [ |
图2 MXene基正极在ZIBs中的应用
Fig. 2 Application of MXene-based cathodes for ZIBs (a) Schematic picture of the composite of MXene/H2V3O8 and the corresponding (b) rate performance and (c) charging/discharging curves[58]; (d) Preparative mechanism of I2 cathode with Nb2CTx as host; (e, f) CV curves, (g) corresponding capacity contribution and (h) charging/discharging curves of V2CTx[61]; (i) Surface oxidation of V2CTx based on the electrochemical activation[63]
图3 MXene基负极在ZIBs中的应用
Fig. 3 Application of MXene-based anodes for ZIBs (a) Schematic illustration of the composite of MXene/chitosan for smooth Zn deposition[72]; (b) Schematic picture of the preparation of MXene/Zn paper and (c) corresponding Coulombic efficiency of Zn deposition/dissolution[74]; (d) Schematic and (e, f) SEM images of MXene@Zn powder; (g) Nucleation and cycling performance of Zn deposition/dissolution based on the MXene@Zn powder anode; (i) Cycling performance and (j) charging/discharging curves of full cell[75]
图4 MXene基电解质在ZIBs中的应用
Fig. 4 Application of MXene-based electrolytes for ZIBs (a) Schematic illustration of the MXene additive for smooth Zn deposition, (b) corresponding formed morphology after electrodeposition, and (c) cycling performance of Zn//Zn symmetry battery[78]; (d) Schematic illustration of preparing MXene incorporated solid polymer electrolytes, (e) cycling performance of Zn//Zn symmetry battery at high temperature and (f) thermal conductivity of various solid polymer electrolyte membranes[79]
图5 基于MXene组分的ZIBs的性能优化策略
Fig. 5 Strategies for improving performance of MXene incorporated ZIBs (a) Preparative shematic, (b) corresponding SEM image with elemental mappings and (c) rate performance of Mn2+ pre-intercalated V2CTx MXene [88]; (d) Schematic picture of the preparation of S-Ti3C2Tx/PANI[95]; (e) Preparation process, and (f) XRD pattern, (g, h) SEM images, and (i) merits of diamine-intercalated MXene[110]
[1] |
DINCER I, ACAR C. A review on clean energy solutions for better sustainability. Int. J. Energy Res., 2015, 39(5): 585.
DOI URL |
[2] |
KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy, 2017, 2: 17125.
DOI URL |
[3] |
WHITTINGHAM M S. Lithium batteries and cathode materials. Chem. Rev., 2004, 104: 4271.
PMID |
[4] |
VON WALD CRESCE A, XU K. Aqueous lithium-ion batteries. Carbon Energy, 2021, 3(5): 721.
DOI URL |
[5] |
MANTHIRAM A, FU Y, CHUNG S-H, et al. Rechargeable lithium-sulfur batteries. Chem. Rev., 2014, 114(23): 11751.
DOI PMID |
[6] |
ZHANG N, CHEN X, YU M, et al. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev., 2020, 49(13): 4203.
DOI PMID |
[7] |
DU W, ANG E H, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci., 2020, 13(10): 3330.
DOI URL |
[8] |
JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev., 2020, 120(15): 7795.
DOI PMID |
[9] |
LV Y, XIAO Y, MA L, et al. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater., 2022, 34(4): 2106409.
DOI URL |
[10] |
WANG X, ZHANG Z, XI B, et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano, 2021, 15(6): 9244.
DOI PMID |
[11] |
YANG Q, LI X, CHEN Z, et al. Cathode engineering for high energy density aqueous Zn batteries. ACC. Mater. Res., 2022, 3(1): 78.
DOI URL |
[12] |
CHEN Z, LI C, YANG Q, et al. Conversion-type nonmetal elemental tellurium anode with high utilization for mild/alkaline zinc batteries. Adv. Mater., 2021, 33: 2105426.
DOI URL |
[13] |
CHEN Z, YANG Q, MO F, et al. Aqueous zinc-tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv. Mater., 2020, 32: 2001469.
DOI URL |
[14] |
CHEN J, DING Y, YAN D, et al. Synthesis of MXene and its application for zinc-ion storage. SusMat, 2022, 2(3): 293.
DOI URL |
[15] |
LI X, HUANG Z, SHUCK C E, et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem., 2022, 6(6): 389.
DOI PMID |
[16] |
KARAHAN H E, GOH K, ZHANG C, et al. MXene materials for designing advanced separation membranes. Adv. Mater., 2020, 32(29): 1906697.
DOI URL |
[17] |
LI Y, HUANG S, PENG S, et al. Toward smart sensing by MXene. Small, 2023, 19(14): 2206126.
DOI URL |
[18] |
HUANG W, HU L, TANG Y, et al. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater., 2020, 30(49): 2005223.
DOI URL |
[19] |
LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceed. National Acad. Sci., 2014, 111(47): 16676.
DOI URL |
[20] |
JAVED M S, MATEEN A, ALI S, et al. The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small, 2022, 18(26): 2201989.
DOI URL |
[21] | LI J, WANG C, YU Z, et al. MXenes for zinc-based electrochemical energy storage devices. Small, 2023: 2304543. |
[22] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248.
DOI URL |
[23] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18): 7633.
DOI URL |
[24] |
WANG X, GARNERO C, ROCHARD G, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J. Mater. Chem. A, 2017, 5(41): 22012.
DOI URL |
[25] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78.
DOI |
[26] |
FENG A, YU Y, JIANG F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram. Int., 2017, 43(8): 6322.
DOI URL |
[27] |
HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 2014, 26(7): 2374.
PMID |
[28] |
WANG L, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett., 2016, 12: 702.
DOI URL |
[29] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385.
DOI URL |
[30] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc., 2019, 141(11): 4730.
DOI PMID |
[31] |
LI M, LI Y B, LUO K, et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach. J. Inorg. Mater., 2019, 34(1): 60.
DOI URL |
[32] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater., 2020, 19(8): 894.
DOI PMID |
[33] |
SHI H, ZHANG P, LIU Z, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed., 2021, 60(16): 8689.
DOI PMID |
[34] |
LI X, LI M, YANG Q, et al. In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv. Energy Mater., 2020, 10(36): 2001791.
DOI URL |
[35] |
NAGUIB M, MASHTALIR O, LUKATSKAYA M R, et al. One- step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun., 2014, 50(56): 7420.
DOI URL |
[36] |
DONG Y F, WU Z S, ZHENG S H, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano, 2017, 11(5): 4792.
DOI URL |
[37] |
XUE Q, ZHANG H, ZHU M, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater., 2017, 29(15): 1604847.
DOI URL |
[38] |
ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater., 2017, 29(11): 4848.
DOI URL |
[39] |
MASHTALIR O, COOK K M, MOCHALIN V N, et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A, 2014, 2(35): 14334.
DOI URL |
[40] |
AHMED B, ANJUM D H, HEDHILI M N, et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016, 8(14): 7580.
DOI URL |
[41] |
HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Inter., 2016, 8(32): 21011.
DOI URL |
[42] |
LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng.: B, 2015, 191: 33.
DOI URL |
[43] |
LI X, YIN X, HAN M, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C, 2017, 5(16): 4068.
DOI URL |
[44] |
MING J, GUO J, XIA C, et al. Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng.: R, 2019, 135: 58.
DOI URL |
[45] |
TANG B, SHAN L, LIANG S, et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci., 2019, 12(11): 3288.
DOI URL |
[46] | FANG G, ZHOU J, PAN A, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett., 2018, 3(10): 24801. |
[47] |
RUAN P, LIANG S, LU B, et al. Design strategies for high- energy-density aqueous zinc batteries. Angew. Chemie Int. Ed., 2022, 61(17): e202200598.
DOI URL |
[48] |
ZHANG N, CHENG F, LIU J, et al. Rechargeable aqueous zinc- manganese dioxide batteries with high energy and power densities. Nature Comm., 2017, 8: 405.
DOI |
[49] |
ZHANG N, DONG Y, JIA M, et al. Rechargeable aqueous Zn- V2O5battery with high energy density and long cycle life. ACS Energy Lett., 2018, 3(6): 1366.
DOI URL |
[50] |
ZHANG L, CHEN L, ZHOU X, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater., 2015, 5(2): 1400930.
DOI URL |
[51] |
PAN H, LI B, MEI D, et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett., 2017, 2(12): 2674.
DOI URL |
[52] |
LI W, WANG K, JIANG K. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci., 2020, 7(23): 2000761.
DOI URL |
[53] | CHEN Z, MO F, WANG T, et al. Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy & Envir. Sci., 2021, 14(4): 2441. |
[54] |
LI W, WANG K, CHENG S, et al. An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater., 2019, 9(27): 1900993.
DOI URL |
[55] |
CHAE M S, HONG S T. Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombohedral zinc hexacyanoferrate cathode. Batteries, 2019, 5(1): 3.
DOI URL |
[56] |
YANG Y, XIAO J, CAI J, et al. Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Fun. Mater., 2020, 31: 2005092.
DOI URL |
[57] |
LIU H, JIANG L, CAO B, et al. Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano, 2022, 16(9): 14539.
DOI URL |
[58] |
LIU C, XU W, MEI C, et al. Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem. Eng. J., 2021, 405: 126737.
DOI URL |
[59] |
DU W, MIAO L, SONG Z, et al. Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. J. Power Sources, 2022, 536: 231512.
DOI URL |
[60] |
FENG Y, FENG Y, ZHANG Y, et al. Flexible zinc-ion microbattery based on a VS2/MXene cathode with high cycle life. J. Power Sources, 2022, 545: 231944.
DOI URL |
[61] |
LI X, LI N, HUANG Z, et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv. Mater., 2021, 33(8): 2006897.
DOI URL |
[62] | LI X, LI N, HUANG Z, et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano, 2021, 15(1): 17186. |
[63] |
LIU Y, JIANG Y, HU Z, et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater., 2021, 31(8): 2008033.
DOI URL |
[64] |
SHA D, LU C, HE W, et al. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano, 2022, 16(2): 2711.
DOI URL |
[65] |
SHI M, WANG B, SHEN Y, et al. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J., 2020, 399: 125627.
DOI URL |
[66] |
SHI J, HOU Y, LIU Z, et al. The high-performance MoO3-x/ MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy, 2022, 91: 106651.
DOI URL |
[67] |
LONG F, ZHANG Q, SHI J, et al. Ultrastable and ultrafast 3D charge-discharge network of robust chemically coupled 1 T- MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J., 2023, 455: 140539.
DOI URL |
[68] |
LI X, MA X, HOU Y, et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2021, 5(11): 2993.
DOI URL |
[69] |
SHIN J, LEE J, PARK Y, et al. Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci., 2020, 11(8): 2028.
DOI PMID |
[70] |
LI H, MA L, HAN C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy, 2019, 62: 550.
DOI URL |
[71] |
XU W, WANG Y. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett., 2019, 11(1): 90.
DOI |
[72] |
TAN L, WEI C, ZHANG Y, et al. Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J., 2022, 431: 134277.
DOI URL |
[73] |
ABERLE B, KOWALCZYK D, MASSINI S, et al. Methylation of unactivated alkenes with engineered methyltransferases to generate non-natural terpenoids. Angew. Chem. Int. Ed., 2023, 62(26): e202301601.
DOI URL |
[74] |
TIAN Y, AN Y, WEI C, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano, 2019, 13(10): 11676.
DOI URL |
[75] |
LI X, LI Q, HOU Y, et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano, 2021, 15(9): 14631.
DOI URL |
[76] |
KUMAR J A, PRAKASH P, KRITHIGA T, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere, 2022, 286: 131607.
DOI URL |
[77] |
CHEN Z, MA X, HOU Y, et al. Grafted MXenes based electrolytes for 5V-class solid-state batteries. Advanced Functional Materials, 33: 2214539.
DOI URL |
[78] |
SUN C, WU C, GU X, et al. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett., 2021, 13: 89.
DOI |
[79] | CHEN Z, LI X L, WANG D H, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy & Environ. Sci., 2021, 14(6): 3492. |
[80] |
QIN L, TAO Q, LIU X, et al. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy, 2019, 60: 734.
DOI URL |
[81] |
LIM K R G, SHEKHIREV M, WYATT B C, et al. Fundamentals of MXene synthesis. Nat. Synth., 2022, 1(8): 601.
DOI |
[82] |
ZHAN X, SI C, ZHOU J, et al. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz, 2020, 5(2): 235.
DOI URL |
[83] |
SHUCK C E, SARYCHEVA A, ANAYEE M, et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater., 2020, 22(3): 1901241.
DOI URL |
[84] | LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene: preparation, properties, and applications. Front. Phys., 2015, 10: 276. |
[85] |
ZHAN C, NAGUIB M, LUKATSKAYA M, et al. Understandingthe MXene pseudocapacitance. J. Phys. Chem. Lett., 2018, 9(6): 1223.
DOI URL |
[86] |
LI X, WANG C, CAO Y, et al. Functional MXene materials: progress of their applications. Chem.-An Asian J., 2018, 13(19): 2742.
DOI URL |
[87] |
ULLAH S, SHAHZAD F, QIU B, et al. MXene-based aptasensors: advances, challenges, and prospects. Prog. Mater. Sci., 2022, 129: 100967.
DOI URL |
[88] | ZHU X, CAO Z, LI X-L, et al. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-ion batteries. Energy Storage Mater., 2022, 45: 568. |
[89] |
DING L, WEI Y, LI L, et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun., 2018, 9: 155.
DOI PMID |
[90] |
JIANG Q, KURRA N, ALHABEB M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater., 2018, 8(13): 1703043.
DOI URL |
[91] |
LI J, YUAN X, LIN C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater., 2017, 7(15): 1602725.
DOI URL |
[92] |
JAVED M S, CHEN J, CHEN L, et al. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. J. Mater. Chem. A, 2016, 4(2): 667.
DOI URL |
[93] |
HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun., 2019, 10: 522.
DOI |
[94] |
LIU Y, DAI Z, ZHANG W, et al. Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano, 2021, 15(5): 9065.
DOI URL |
[95] |
AN Y, TIAN Y, LIU C, et al. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano, 2021, 15(9): 15259.
DOI URL |
[96] |
GASSER T M, THOENY A V, FORTES A D, et al. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat. Commun., 2021, 12: 1128.
DOI PMID |
[97] |
MA L, SCHROEDER M A, BORODIN O, et al. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy, 2020, 5(10): 743.
DOI |
[98] |
SUMBOJA A, LIU J, ZHENG W G, et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev., 2018, 47(15): 5919.
DOI PMID |
[99] |
MATEEN A, ANSARI M Z, ABBAS Q, et al. In situ nitrogen functionalization of 2D-Ti3C2Tx-MXenes for high-performance Zn-ion supercapacitor. Molecules, 2022, 27(21): 7446.
DOI URL |
[100] |
LI Z, WANG D, SUN Z, et al. N, P dual-doped MXene nanocomposites for boosting zinc-ion storage capability. Electrochim. Acta, 2023, 455: 142440.
DOI URL |
[101] |
ZHENG W, HALIM J, EL GHAZALY A, et al. Flexible free- standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci., 2021, 8(3): 2003656.
DOI URL |
[102] |
SHEN L, ZHOU X, ZHANG X, et al. Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A, 2018, 6(46): 23513.
DOI URL |
[103] | LI X, LI M, LI X, et al. Low infrared emissivity and strong stealth of Ti-based MXenes. Research, 2022:9892628. |
[104] |
SUN N, ZHU Q, ANASORI B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater., 2019, 29(51): 1906282.
DOI URL |
[105] |
LIANG W, ZHITOMIRSKY I. MXene-carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. J. Mater. Chem. A, 2021, 9(16): 10335.
DOI URL |
[106] |
ZOU K, CAI P, WANG B, et al. Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett., 2020, 12: 121.
DOI PMID |
[107] |
WU Z, LIU X, SHANG T, et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater., 2021, 31(41): 2102874.
DOI URL |
[108] |
SHANG T, LIN Z, QI C, et al. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater., 2019, 29(33): 1903960.
DOI URL |
[109] |
BU F, ZAGHO M M, IBRAHIM Y, et al. Porous MXenes: synthesis, structures, and applications. Nano Today, 2020, 30: 100803.
DOI URL |
[110] |
PENG M, WANG L, LI L, et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability. Adv. Funct. Mater., 2022, 32(7): 2109524.
DOI URL |
[111] |
LIANG K, MATSUMOTO R A, ZHAO W, et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater., 2021, 31(33): 2104007.
DOI URL |
[112] |
HE P, YAN M, ZHANG G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017, 7(11): 1601920.
DOI URL |
[113] |
LIANG G, LI X, WANG Y, et al. Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy, 2022, 1(1): e9120002.
DOI URL |
[1] | 王琨鹏, 刘兆林, 林存生, 王治宇. 基于低含水量普鲁士蓝正极的准固态钠离子电池[J]. 无机材料学报, 2024, 39(9): 1005-1012. |
[2] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[3] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[4] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[5] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[6] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. |
[7] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[8] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[9] | 丁浩明, 陈科, 李勉, 李友兵, 柴之芳, 黄庆. 无机材料的“化学剪刀”结构编辑策略[J]. 无机材料学报, 2024, 39(2): 115-128. |
[10] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[11] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[12] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[13] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[14] | 郑嘉乾, 卢霄, 鲁亚杰, 王迎军, 王臻, 卢建熙. 医用生物陶瓷的功能性生物适配机制及应用[J]. 无机材料学报, 2024, 39(1): 1-16. |
[15] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||