无机材料学报 ›› 2024, Vol. 39 ›› Issue (2): 204-214.DOI: 10.15541/jim20230503 CSTR: 32189.14.10.15541/jim20230503
所属专题: 【能源环境】储能电池(202506); 【信息功能】MAX、MXene及其他二维材料(202506)
收稿日期:2023-10-31
									
				
											修回日期:2023-12-15
									
				
									
				
											出版日期:2023-12-19
									
				
											网络出版日期:2023-12-19
									
			通讯作者:
					支春义, 教授. E-mail: cy.zhi@cityu.edu.hk作者简介:陈 泽(1993-), 男, 博士. E-mail: ze.chen@cityu.edu.hk
				
							基金资助:Received:2023-10-31
									
				
											Revised:2023-12-15
									
				
									
				
											Published:2023-12-19
									
				
											Online:2023-12-19
									
			Contact:
					ZHI Chunyi, professor. E-mail: cy.zhi@cityu.edu.hkAbout author:CHEN Ze (1993-), male, PhD. E-mail: ze.chen@cityu.edu.hk				
							摘要:
可充电锌离子电池(ZIBs)以其低成本、固有安全性、高比能量和环保特性而在大规模储能领域中引起了极大的关注。尽管对ZIBs的正极、负极以及电解质的研究不断取得突破, ZIBs的实际性能仍难以达到实用化的要求, 关键在于缺少先进材料的开发。MXene作为一种新型的二维材料, 具有各种优异的特性包括丰富的原料、可定制的结构和独特的理化特性。二维(2D)MXene在ZIBs中的应用已经取得了重大进展。本文简要总结了用于ZIBs的MXene的多种合成路线、MXene的环境稳定性、形态和结构特征以及化学性质的进展; 详细阐述了MXene基阴极、阳极和电解质/隔膜的最新发展, 丰富的成果表明MXene材料具有实现高性能ZIBs的巨大潜力; 归纳探讨了增强基于MXene的 ZIBs性能的策略, 包括离子插层调控、表面接枝修饰、杂原子掺杂、层间距拓宽等; 最后, 提出了基于MXene的ZIBs面临的挑战, 展望了未来前景, 旨在为开发实用化MXene基储能器件指明方向。
中图分类号:
陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214.
CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects[J]. Journal of Inorganic Materials, 2024, 39(2): 204-214.
 
																													图1 MXene的制备示意图以及典型的熔融盐合成法
Fig. 1 Schematic illustration of preparing MXene (a) Process of chemical etching[22]; (b) Molten salt method for TiN-based MXene preparation[29]; (c) CuCl2 Lewis molten salt for MXene preparation[32]
| Material | Capacity/(mAh·g-1) | Voltage/V(vs. Zn2+/Zn) | Capacity retention | Ref. | |
|---|---|---|---|---|---|
| Cathode | MnO2 | 258 | 1.3 | 94%(2000 cycles) | [ | 
| V2O5 | 470 | 0.75 | 91%(4000 cycles) | [ | |
| ZnHCF | 65 | 1.75 | 81%(100 cycles) | [ | |
| I2 | 174 | 1.15 | 90%(3000 cycles) | [ | |
| S | 1105 | 0.5 | 85%(50 cycles) | [ | |
| Se | 611 | 1.2 | 80%(1000 cycles) | [ | |
| Te | 420 | 0.6 | 82%(500 cycles) | [ | |
| Anode | TiS2 | 140 | 0.3 | 74%(100 cycles) | [ | 
| Zn2Mo6S8 | 62.3 | 0.35 | 81%(10 cycles) | [ | |
| Cu2-xSe | 230 | 0.45 | 96%(20000 cycles) | [ | 
表1 ZIBs中典型的正极和负极材料的电化学性能汇总
Table 1 Summary of the typical cathodes and anodes materials in ZIBs
| Material | Capacity/(mAh·g-1) | Voltage/V(vs. Zn2+/Zn) | Capacity retention | Ref. | |
|---|---|---|---|---|---|
| Cathode | MnO2 | 258 | 1.3 | 94%(2000 cycles) | [ | 
| V2O5 | 470 | 0.75 | 91%(4000 cycles) | [ | |
| ZnHCF | 65 | 1.75 | 81%(100 cycles) | [ | |
| I2 | 174 | 1.15 | 90%(3000 cycles) | [ | |
| S | 1105 | 0.5 | 85%(50 cycles) | [ | |
| Se | 611 | 1.2 | 80%(1000 cycles) | [ | |
| Te | 420 | 0.6 | 82%(500 cycles) | [ | |
| Anode | TiS2 | 140 | 0.3 | 74%(100 cycles) | [ | 
| Zn2Mo6S8 | 62.3 | 0.35 | 81%(10 cycles) | [ | |
| Cu2-xSe | 230 | 0.45 | 96%(20000 cycles) | [ | 
 
																													图2 MXene基正极在ZIBs中的应用
Fig. 2 Application of MXene-based cathodes for ZIBs (a) Schematic picture of the composite of MXene/H2V3O8 and the corresponding (b) rate performance and (c) charging/discharging curves[58]; (d) Preparative mechanism of I2 cathode with Nb2CTx as host; (e, f) CV curves, (g) corresponding capacity contribution and (h) charging/discharging curves of V2CTx[61]; (i) Surface oxidation of V2CTx based on the electrochemical activation[63]
 
																													图3 MXene基负极在ZIBs中的应用
Fig. 3 Application of MXene-based anodes for ZIBs (a) Schematic illustration of the composite of MXene/chitosan for smooth Zn deposition[72]; (b) Schematic picture of the preparation of MXene/Zn paper and (c) corresponding Coulombic efficiency of Zn deposition/dissolution[74]; (d) Schematic and (e, f) SEM images of MXene@Zn powder; (g) Nucleation and cycling performance of Zn deposition/dissolution based on the MXene@Zn powder anode; (i) Cycling performance and (j) charging/discharging curves of full cell[75]
 
																													图4 MXene基电解质在ZIBs中的应用
Fig. 4 Application of MXene-based electrolytes for ZIBs (a) Schematic illustration of the MXene additive for smooth Zn deposition, (b) corresponding formed morphology after electrodeposition, and (c) cycling performance of Zn//Zn symmetry battery[78]; (d) Schematic illustration of preparing MXene incorporated solid polymer electrolytes, (e) cycling performance of Zn//Zn symmetry battery at high temperature and (f) thermal conductivity of various solid polymer electrolyte membranes[79]
 
																													图5 基于MXene组分的ZIBs的性能优化策略
Fig. 5 Strategies for improving performance of MXene incorporated ZIBs (a) Preparative shematic, (b) corresponding SEM image with elemental mappings and (c) rate performance of Mn2+ pre-intercalated V2CTx MXene [88]; (d) Schematic picture of the preparation of S-Ti3C2Tx/PANI[95]; (e) Preparation process, and (f) XRD pattern, (g, h) SEM images, and (i) merits of diamine-intercalated MXene[110]
| [1] | DINCER I, ACAR C. A review on clean energy solutions for better sustainability. Int. J. Energy Res., 2015,  39(5): 585. DOI URL | 
| [2] | KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy, 2017,  2: 17125. DOI URL | 
| [3] | WHITTINGHAM M S. Lithium batteries and cathode materials. Chem. Rev., 2004,  104: 4271. PMID | 
| [4] | VON WALD CRESCE A, XU K. Aqueous lithium-ion batteries. Carbon Energy, 2021,  3(5): 721. DOI URL | 
| [5] | MANTHIRAM A, FU Y, CHUNG S-H, et al.  Rechargeable lithium-sulfur batteries. Chem. Rev., 2014,  114(23): 11751. DOI PMID | 
| [6] | ZHANG N, CHEN X, YU M, et al.  Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev., 2020,  49(13): 4203. DOI PMID | 
| [7] | DU W, ANG E H, YANG Y, et al.  Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci., 2020,  13(10): 3330. DOI URL | 
| [8] | JIA X, LIU C, NEALE Z G, et al.  Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev., 2020,  120(15): 7795. DOI PMID | 
| [9] | LV Y, XIAO Y, MA L, et al.  Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater., 2022,  34(4): 2106409. DOI URL | 
| [10] | WANG X, ZHANG Z, XI B, et al.  Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano, 2021,  15(6): 9244. DOI PMID | 
| [11] | YANG Q, LI X, CHEN Z, et al.  Cathode engineering for high energy density aqueous Zn batteries. ACC. Mater. Res., 2022,  3(1): 78. DOI URL | 
| [12] | CHEN Z, LI C, YANG Q, et al.  Conversion-type nonmetal elemental tellurium anode with high utilization for mild/alkaline zinc batteries. Adv. Mater., 2021,  33: 2105426. DOI URL | 
| [13] | CHEN Z, YANG Q, MO F, et al.  Aqueous zinc-tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv. Mater., 2020,  32: 2001469. DOI URL | 
| [14] | CHEN J, DING Y, YAN D, et al.  Synthesis of MXene and its application for zinc-ion storage. SusMat, 2022,  2(3): 293. DOI URL | 
| [15] | LI X, HUANG Z, SHUCK C E, et al.  MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem., 2022,  6(6): 389. DOI PMID | 
| [16] | KARAHAN H E, GOH K, ZHANG C, et al.  MXene materials for designing advanced separation membranes. Adv. Mater., 2020,  32(29): 1906697. DOI URL | 
| [17] | LI Y, HUANG S, PENG S, et al.  Toward smart sensing by MXene. Small, 2023,  19(14): 2206126. DOI URL | 
| [18] | HUANG W, HU L, TANG Y, et al.  Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater., 2020,  30(49): 2005223. DOI URL | 
| [19] | LING Z, REN C E, ZHAO M Q, et al.  Flexible and conductive MXene films and nanocomposites with high capacitance. Proceed. National Acad. Sci., 2014,  111(47): 16676. DOI URL | 
| [20] | JAVED M S, MATEEN A, ALI S, et al.  The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small, 2022,  18(26): 2201989. DOI URL | 
| [21] | LI J, WANG C, YU Z, et al. MXenes for zinc-based electrochemical energy storage devices. Small, 2023: 2304543. | 
| [22] | NAGUIB M, KURTOGLU M, PRESSER V, et al.  Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011,  23(37): 4248. DOI URL | 
| [23] | ALHABEB M, MALESKI K, ANASORI B, et al.  Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017,  29(18): 7633. DOI URL | 
| [24] | WANG X, GARNERO C, ROCHARD G, et al.  A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J. Mater. Chem. A, 2017,  5(41): 22012. DOI URL | 
| [25] | GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014,  516(7529): 78. DOI | 
| [26] | FENG A, YU Y, JIANG F, et al.  Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram. Int., 2017,  43(8): 6322. DOI URL | 
| [27] | HALIM J, LUKATSKAYA M R, COOK K M, et al.  Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 2014,  26(7): 2374. PMID | 
| [28] | WANG L, ZHANG H, WANG B, et al.  Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett., 2016,  12: 702. DOI URL | 
| [29] | URBANKOWSKI P, ANASORI B, MAKARYAN T, et al.  Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016,  8(22): 11385. DOI URL | 
| [30] | LI M, LU J, LUO K, et al.  Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc., 2019,  141(11): 4730. DOI PMID | 
| [31] | LI M, LI Y B, LUO K, et al.  Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach. J. Inorg. Mater., 2019,  34(1): 60. DOI URL | 
| [32] | LI Y, SHAO H, LIN Z, et al.  A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater., 2020,  19(8): 894. DOI PMID | 
| [33] | SHI H, ZHANG P, LIU Z, et al.  Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed., 2021,  60(16): 8689. DOI PMID | 
| [34] | LI X, LI M, YANG Q, et al.  In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv. Energy Mater., 2020,  10(36): 2001791. DOI URL | 
| [35] | NAGUIB M, MASHTALIR O, LUKATSKAYA M R, et al.  One- step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun., 2014,  50(56): 7420. DOI URL | 
| [36] | DONG Y F, WU Z S, ZHENG S H, et al.  Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano, 2017,  11(5): 4792. DOI URL | 
| [37] | XUE Q, ZHANG H, ZHU M, et al.  Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater., 2017,  29(15): 1604847. DOI URL | 
| [38] | ZHANG C J, PINILLA S, MCEVOY N, et al.  Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater., 2017,  29(11): 4848. DOI URL | 
| [39] | MASHTALIR O, COOK K M, MOCHALIN V N, et al.  Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A, 2014,  2(35): 14334. DOI URL | 
| [40] | AHMED B, ANJUM D H, HEDHILI M N, et al.  H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016,  8(14): 7580. DOI URL | 
| [41] | HAN M, YIN X, WU H, et al.  Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Inter., 2016,  8(32): 21011. DOI URL | 
| [42] | LI Z, WANG L, SUN D, et al.  Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng.: B, 2015,  191: 33. DOI URL | 
| [43] | LI X, YIN X, HAN M, et al.  Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C, 2017,  5(16): 4068. DOI URL | 
| [44] | MING J, GUO J, XIA C, et al.  Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng.: R, 2019,  135: 58. DOI URL | 
| [45] | TANG B, SHAN L, LIANG S, et al.  Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci., 2019,  12(11): 3288. DOI URL | 
| [46] | FANG G, ZHOU J, PAN A, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett., 2018, 3(10): 24801. | 
| [47] | RUAN P, LIANG S, LU B, et al.  Design strategies for high- energy-density aqueous zinc batteries. Angew. Chemie Int. Ed., 2022,  61(17): e202200598. DOI URL | 
| [48] | ZHANG N, CHENG F, LIU J, et al.  Rechargeable aqueous zinc- manganese dioxide batteries with high energy and power densities. Nature Comm., 2017,  8: 405. DOI | 
| [49] | ZHANG N, DONG Y, JIA M, et al.  Rechargeable aqueous Zn- V2O5battery with high energy density and long cycle life. ACS Energy Lett., 2018,  3(6): 1366. DOI URL | 
| [50] | ZHANG L, CHEN L, ZHOU X, et al.  Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater., 2015,  5(2): 1400930. DOI URL | 
| [51] | PAN H, LI B, MEI D, et al.  Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett., 2017,  2(12): 2674. DOI URL | 
| [52] | LI W, WANG K, JIANG K. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci., 2020,  7(23): 2000761. DOI URL | 
| [53] | CHEN Z, MO F, WANG T, et al. Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy & Envir. Sci., 2021, 14(4): 2441. | 
| [54] | LI W, WANG K, CHENG S, et al.  An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater., 2019,  9(27): 1900993. DOI URL | 
| [55] | CHAE M S, HONG S T. Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombohedral zinc hexacyanoferrate cathode. Batteries, 2019,  5(1): 3. DOI URL | 
| [56] | YANG Y, XIAO J, CAI J, et al.  Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Fun. Mater., 2020,  31: 2005092. DOI URL | 
| [57] | LIU H, JIANG L, CAO B, et al.  Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano, 2022,  16(9): 14539. DOI URL | 
| [58] | LIU C, XU W, MEI C, et al.  Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem. Eng. J., 2021,  405: 126737. DOI URL | 
| [59] | DU W, MIAO L, SONG Z, et al.  Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. J. Power Sources, 2022,  536: 231512. DOI URL | 
| [60] | FENG Y, FENG Y, ZHANG Y, et al.  Flexible zinc-ion microbattery based on a VS2/MXene cathode with high cycle life. J. Power Sources, 2022,  545: 231944. DOI URL | 
| [61] | LI X, LI N, HUANG Z, et al.  Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv. Mater., 2021,  33(8): 2006897. DOI URL | 
| [62] | LI X, LI N, HUANG Z, et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano, 2021, 15(1): 17186. | 
| [63] | LIU Y, JIANG Y, HU Z, et al.  In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater., 2021,  31(8): 2008033. DOI URL | 
| [64] | SHA D, LU C, HE W, et al.  Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano, 2022,  16(2): 2711. DOI URL | 
| [65] | SHI M, WANG B, SHEN Y, et al.  3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J., 2020,  399: 125627. DOI URL | 
| [66] | SHI J, HOU Y, LIU Z, et al.  The high-performance MoO3-x/ MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy, 2022,  91: 106651. DOI URL | 
| [67] | LONG F, ZHANG Q, SHI J, et al.  Ultrastable and ultrafast 3D charge-discharge network of robust chemically coupled 1 T- MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J., 2023,  455: 140539. DOI URL | 
| [68] | LI X, MA X, HOU Y, et al.  Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2021,  5(11): 2993. DOI URL | 
| [69] | SHIN J, LEE J, PARK Y, et al.  Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci., 2020,  11(8): 2028. DOI PMID | 
| [70] | LI H, MA L, HAN C, et al.  Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy, 2019,  62: 550. DOI URL | 
| [71] | XU W, WANG Y. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett., 2019,  11(1): 90. DOI | 
| [72] | TAN L, WEI C, ZHANG Y, et al.  Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J., 2022,  431: 134277. DOI URL | 
| [73] | ABERLE B, KOWALCZYK D, MASSINI S, et al.  Methylation of unactivated alkenes with engineered methyltransferases to generate non-natural terpenoids. Angew. Chem. Int. Ed., 2023,  62(26): e202301601. DOI URL | 
| [74] | TIAN Y, AN Y, WEI C, et al.  Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano, 2019,  13(10): 11676. DOI URL | 
| [75] | LI X, LI Q, HOU Y, et al.  Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano, 2021,  15(9): 14631. DOI URL | 
| [76] | KUMAR J A, PRAKASH P, KRITHIGA T, et al.  Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere, 2022,  286: 131607. DOI URL | 
| [77] | CHEN Z, MA X, HOU Y, et al.  Grafted MXenes based electrolytes for 5V-class solid-state batteries. Advanced Functional Materials,  33: 2214539. DOI URL | 
| [78] | SUN C, WU C, GU X, et al.  Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett., 2021,  13: 89. DOI | 
| [79] | CHEN Z, LI X L, WANG D H, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy & Environ. Sci., 2021, 14(6): 3492. | 
| [80] | QIN L, TAO Q, LIU X, et al.  Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy, 2019,  60: 734. DOI URL | 
| [81] | LIM K R G, SHEKHIREV M, WYATT B C, et al.  Fundamentals of MXene synthesis. Nat. Synth., 2022,  1(8): 601. DOI | 
| [82] | ZHAN X, SI C, ZHOU J, et al.  MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz, 2020,  5(2): 235. DOI URL | 
| [83] | SHUCK C E, SARYCHEVA A, ANAYEE M, et al.  Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater., 2020,  22(3): 1901241. DOI URL | 
| [84] | LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene: preparation, properties, and applications. Front. Phys., 2015, 10: 276. | 
| [85] | ZHAN C, NAGUIB M, LUKATSKAYA M, et al.  Understandingthe MXene pseudocapacitance. J. Phys. Chem. Lett., 2018,  9(6): 1223. DOI URL | 
| [86] | LI X, WANG C, CAO Y, et al.  Functional MXene materials: progress of their applications. Chem.-An Asian J., 2018,  13(19): 2742. DOI URL | 
| [87] | ULLAH S, SHAHZAD F, QIU B, et al.  MXene-based aptasensors: advances, challenges, and prospects. Prog. Mater. Sci., 2022,  129: 100967. DOI URL | 
| [88] | ZHU X, CAO Z, LI X-L, et al. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-ion batteries. Energy Storage Mater., 2022, 45: 568. | 
| [89] | DING L, WEI Y, LI L, et al.  MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun., 2018,  9: 155. DOI PMID | 
| [90] | JIANG Q, KURRA N, ALHABEB M, et al.  All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater., 2018,  8(13): 1703043. DOI URL | 
| [91] | LI J, YUAN X, LIN C, et al.  Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater., 2017,  7(15): 1602725. DOI URL | 
| [92] | JAVED M S, CHEN J, CHEN L, et al.  Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. J. Mater. Chem. A, 2016,  4(2): 667. DOI URL | 
| [93] | HART J L, HANTANASIRISAKUL K, LANG A C, et al.  Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun., 2019,  10: 522. DOI | 
| [94] | LIU Y, DAI Z, ZHANG W, et al.  Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano, 2021,  15(5): 9065. DOI URL | 
| [95] | AN Y, TIAN Y, LIU C, et al.  Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano, 2021,  15(9): 15259. DOI URL | 
| [96] | GASSER T M, THOENY A V, FORTES A D, et al.  Structural characterization of ice XIX as the second polymorph related to ice VI. Nat. Commun., 2021,  12: 1128. DOI PMID | 
| [97] | MA L, SCHROEDER M A, BORODIN O, et al.  Realizing high zinc reversibility in rechargeable batteries. Nat. Energy, 2020,  5(10): 743. DOI | 
| [98] | SUMBOJA A, LIU J, ZHENG W G, et al.  Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev., 2018,  47(15): 5919. DOI PMID | 
| [99] | MATEEN A, ANSARI M Z, ABBAS Q, et al.  In situ nitrogen functionalization of 2D-Ti3C2Tx-MXenes for high-performance Zn-ion supercapacitor. Molecules, 2022,  27(21): 7446. DOI URL | 
| [100] | LI Z, WANG D, SUN Z, et al.  N, P dual-doped MXene nanocomposites for boosting zinc-ion storage capability. Electrochim. Acta, 2023,  455: 142440. DOI URL | 
| [101] | ZHENG W, HALIM J, EL GHAZALY A, et al.  Flexible free- standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci., 2021,  8(3): 2003656. DOI URL | 
| [102] | SHEN L, ZHOU X, ZHANG X, et al.  Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A, 2018,  6(46): 23513. DOI URL | 
| [103] | LI X, LI M, LI X, et al. Low infrared emissivity and strong stealth of Ti-based MXenes. Research, 2022:9892628. | 
| [104] | SUN N, ZHU Q, ANASORI B, et al.  MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater., 2019,  29(51): 1906282. DOI URL | 
| [105] | LIANG W, ZHITOMIRSKY I. MXene-carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. J. Mater. Chem. A, 2021,  9(16): 10335. DOI URL | 
| [106] | ZOU K, CAI P, WANG B, et al.  Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett., 2020,  12: 121. DOI PMID | 
| [107] | WU Z, LIU X, SHANG T, et al.  Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater., 2021,  31(41): 2102874. DOI URL | 
| [108] | SHANG T, LIN Z, QI C, et al.  3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater., 2019,  29(33): 1903960. DOI URL | 
| [109] | BU F, ZAGHO M M, IBRAHIM Y, et al.  Porous MXenes: synthesis, structures, and applications. Nano Today, 2020,  30: 100803. DOI URL | 
| [110] | PENG M, WANG L, LI L, et al.  Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability. Adv. Funct. Mater., 2022,  32(7): 2109524. DOI URL | 
| [111] | LIANG K, MATSUMOTO R A, ZHAO W, et al.  Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater., 2021,  31(33): 2104007. DOI URL | 
| [112] | HE P, YAN M, ZHANG G, et al.  Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017,  7(11): 1601920. DOI URL | 
| [113] | LIANG G, LI X, WANG Y, et al.  Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy, 2022,  1(1): e9120002. DOI URL | 
| [1] | 刘会来, 李志豪, 孔德峰, 陈星. 酞菁铁/MXene复合阴极的制备及电芬顿降解磺胺间二甲氧嘧啶[J]. 无机材料学报, 2025, 40(1): 61-69. | 
| [2] | 王琨鹏, 刘兆林, 林存生, 王治宇. 基于低含水量普鲁士蓝正极的准固态钠离子电池[J]. 无机材料学报, 2024, 39(9): 1005-1012. | 
| [3] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. | 
| [4] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. | 
| [5] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. | 
| [6] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. | 
| [7] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. | 
| [8] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. | 
| [9] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. | 
| [10] | 丁浩明, 陈科, 李勉, 李友兵, 柴之芳, 黄庆. 无机材料的“化学剪刀”结构编辑策略[J]. 无机材料学报, 2024, 39(2): 115-128. | 
| [11] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. | 
| [12] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. | 
| [13] | 孔剑锋, 黄杰成, 刘兆林, 林存生, 王治宇. 基于DPEPA聚合物凝胶电解质的准固态钠离子电池[J]. 无机材料学报, 2024, 39(12): 1331-1338. | 
| [14] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. | 
| [15] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
