无机材料学报 ›› 2024, Vol. 39 ›› Issue (2): 179-185.DOI: 10.15541/jim20230397 CSTR: 32189.14.10.15541/jim20230397
所属专题: 【信息功能】敏感陶瓷(202409); 【信息功能】介电、铁电、压电材料(202409); 【信息功能】柔性材料(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
收稿日期:
2023-08-31
修回日期:
2023-10-12
出版日期:
2023-10-15
网络出版日期:
2023-10-15
通讯作者:
刘逆霜, 教授. E-mail: nishuang_liu@foxmail.com;作者简介:
尹建宇(1994-), 男, 博士研究生. E-mail: yjy.yin@outlook.com
基金资助:
YIN Jianyu1(), LIU Nishuang1(
), GAO Yihua1,2(
)
Received:
2023-08-31
Revised:
2023-10-12
Published:
2023-10-15
Online:
2023-10-15
Contact:
LIU Nishuang, professor. E-mail: nishuang_liu@foxmail.com;About author:
YIN Jianyu (1994-), male, PhD candidate. E-mail: yjy.yin@outlook.com
Supported by:
摘要:
近年来, 压力传感器在智能可穿戴纺织品、健康监测、电子皮肤等领域得到了广泛应用。二维纳米材料MXene的出现, 为压力传感带来了全新的突破。Ti3C2Tx是压力传感领域研究最多的MXene, 具有良好的机械性能、高导电性、优异的亲水性以及广泛的可修饰性, 是理想的压力传感材料。因此, 近些年研究者们对MXene在压力传感器中的设计和应用进行了大量探索和研究。本文总结了MXene的制备技术和抗氧化方法。同时介绍了基于MXene的微结构设计, 包括气凝胶/多孔结构材料、水凝胶、柔性衬底和薄膜。该类设计有利于提高压力传感器的响应范围、灵敏度和柔韧性, 促进了压力传感器的快速发展。此外, 进一步探讨了MXene压力传感器的工作机制, 包括压阻式、电容式、压电式、摩擦电式、电池式和纳米流体式等。MXene以其优异的特性而在各种机制的传感器中得到了广泛应用。最后, 对MXene材料的合成、性质以及其在压力传感方面的机遇和挑战进行了展望。
中图分类号:
尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185.
YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing[J]. Journal of Inorganic Materials, 2024, 39(2): 179-185.
图2 基于MXene的结构设计
Fig. 2 Structural designs based on MXene Schematic illustration of the fabrication of (a) Ti3C2Tx/rGO aerogel[30], (b) Ti3C2Tx/CNF foam[12], (c) Ti3C2Tx hydrogel[34], (d) Ti3C2Tx/cotton fabric composite material[37] and (e) biomimetic interconnected bio-composite film[39]
图3 基于MXene 的压力传感机制
Fig. 3 Pressure-sensing mechanism based on MXene Schematic representation of the working mechanisms of (A) MXene-sponge piezoresistive pressure sensor[31], (B) MXene/PVP-based capacitive pressure sensor[42], (C) SF@MXene-A based triboelectric nanogenerator[43], (D) PVDF/MXene piezoelectric pressure sensor[45], (E) rGM battery typed pressure sensor[46] and (F) MXene/CNF nanofluid pressure sensor[48]
[1] |
YANG R X, DUTTA A K, LI B W, et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nature Communications, 2023, 14: 2907.
DOI PMID |
[2] |
XIONG X Y, LIANG J, WU W. Principle and recent progress of triboelectric pressure sensors for wearable applications. Nano Energy, 2023, 113: 108542.
DOI URL |
[3] |
BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 2018, 1(5): 314.
DOI |
[4] |
SHI Z Y, MENG L X, SHI X L, et al. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Letters, 2022, 14(1): 141.
DOI PMID |
[5] |
XU T, SONG Q, LIU K, et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Letters, 2023, 15(1): 98.
DOI PMID |
[6] | YANG Y N, WANG R R, SUN J. MXenes in flexible force sensitive sensors: a review. Journal of Inorganic Materials, 2019, 35(1): 8. |
[7] |
CHOI J, KWON D, KIM B, et al. Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell. Nano Energy, 2020, 74: 104749.
DOI URL |
[8] |
CHEN S W, WU N, LIN S Z, et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy, 2020, 70: 104460.
DOI URL |
[9] |
DING L, JIANG R, TANG Z L, et al. MXene: nanoengineering and application as electrode materials for supercapacitors. Journal of Inorganic Materials, 2022, 38(6): 619.
DOI URL |
[10] |
WANG Y Z, GUO T C, TIAN Z N, et al. MXenes for energy harvesting. Advanced Materials, 2022, 34(21): 2108560.
DOI URL |
[11] |
HO D H, CHOI Y Y, JO S B, et al. Sensing with MXenes: progress and prospects. Advanced Materials, 2021, 33(47): 2005846.
DOI URL |
[12] |
SU T Y, LIU N S, GAO Y H, et al. MXene/cellulose nanofiber- foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy, 2021, 87: 106151.
DOI URL |
[13] |
NAGUIB M, BARSOUM M W, GOGOTSI Y. Ten years of progress in the synthesis and development of MXenes. Advanced Materials, 2021, 33(39): 2103393.
DOI URL |
[14] |
VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372(6547): eabf1581.
DOI URL |
[15] |
WANG Y X, YUE Y, CHENG F, et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano, 2022, 16(2): 1734.
DOI URL |
[16] |
CHEN J X, LI Z L, NI F L, et al. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Materials Horizons, 2020, 7(7): 1828.
DOI URL |
[17] | LI M, HUANG Q. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. Journal of Inorganic Materials, 2019, 35(1): 1. |
[18] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322.
DOI PMID |
[19] |
ZHANG J F, CAO H Y, WANG H B. Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6): 561.
DOI URL |
[20] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385.
DOI URL |
[21] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019, 141(11): 4730.
DOI PMID |
[22] |
LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21): 6115.
DOI URL |
[23] |
WU Z G, WEI L S, TANG S W, et al. Recent progress in Ti3C2Tx MXene-based flexible pressure sensors. ACS Nano, 2021, 15(12): 18880.
DOI URL |
[24] |
KAMYSBAYEV V, FILATOV A S, HU H C, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506): 979.
DOI PMID |
[25] |
CHAE Y, KIM S J, CHO S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387.
DOI URL |
[26] |
SEREDYCH M, SHUCK C E, PINTO D, et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chemistry of Materials, 2019, 31(9): 3324.
DOI URL |
[27] |
PERSSON I, HALIM J, HANSEN T W, et al. How much oxygen can a MXene surface take before it breaks? Advanced Functional Materials, 2020, 30(47): 1909005.
DOI URL |
[28] |
ZHAO X F, VASHISTH A, BLIVIN J W, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 2020, 7(20): 2000845.
DOI URL |
[29] |
LONG S S, FENG Y C, HE F L, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy, 2021, 85: 105973.
DOI URL |
[30] |
MA Y N, YUE Y, ZHANG H, et al. 3D synergistical MXene/ reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano, 2018, 12(4): 3209.
DOI URL |
[31] |
YUE Y, LIU N S, LIU W J, et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50: 79.
DOI URL |
[32] |
SUN X, YAO F L, LI J J. Nanocomposite hydrogel-based strain and pressure sensors: a review. Journal of Materials Chemistry A, 2020, 8(36): 18605.
DOI URL |
[33] |
ZHANG Y Z, LEE K H, ANJUM D H, et al. MXenes stretch hydrogel sensor performance to new limits. Science Advances, 2018, 4(6): eaat0098.
DOI URL |
[34] | ZHANG Y L, CHEN K X, LI Y S, et al. High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS Applied Materials & Interfaces, 2019, 11(50): 47350. |
[35] |
LIAO H, GUO X L, WAN P B, et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low- temperature tolerant strain sensors. Advanced Functional Materials, 2019, 29(39): 1904507.
DOI URL |
[36] |
ZHENG Y J, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chemical Engineering Journal, 2021, 420: 127720.
DOI URL |
[37] | MA C, YUAN Q, DU H S, et al. Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Applied Materials & Interfaces, 2020, 12(30): 34226. |
[38] |
CHAO M Y, HE L Z, GONG M, et al. Breathable Ti3C2Tx MXene/ protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano, 2021, 15(6): 9746.
DOI URL |
[39] |
WANG K, LOU Z, WANG L L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 2019, 13(8): 9139.
DOI PMID |
[40] |
LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/ silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Advanced Functional Materials, 2019, 29(44): 1905197.
DOI URL |
[41] |
RIM Y S, BAE S H, CHEN H J, et al. Recent progress in materials and devices toward printable and flexible sensors. Advanced Materials, 2016, 28(22): 4415.
DOI URL |
[42] | QIN R Z, HU M J, LI X, et al. A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor. Microsystems & Nanoengineering, 2021, 7(1): 100. |
[43] |
TAN X, WANG S, YOU Z, et al. High performance porous triboelectric nanogenerator based on silk fibroin@MXene composite aerogel and PDMS sponge. ACS Materials Letters, 2023, 5(7): 1929.
DOI URL |
[44] |
TAN D C, JIANG C M, SUN N, et al. Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy, 2021, 90: 106528.
DOI URL |
[45] | HAN R, ZHENG L, LI G Z, et al. Self-poled poly(vinylidene fluoride)/MXene piezoelectric energy harvester with boosted power generation ability and the roles of crystalline orientation and polarized interfaces. ACS Applied Materials & Interfaces, 2021, 13(39): 46738. |
[46] |
LEI D D, ZHANG Q X, LIU N S, et al. An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Advanced Functional Materials, 2022, 32(5): 2108856.
DOI URL |
[47] |
ZHAN H L, XIONG Z Y, CHENG C, et al. Solvation-involved nanoionics: new opportunities from 2D nanomaterial laminar membranes. Advanced Materials, 2020, 32(18): 1904562.
DOI URL |
[48] |
YUE Y, LIU N S, SU T Y, et al. Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Advanced Functional Materials, 2023, 33(13): 2211613.
DOI URL |
[1] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[2] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[3] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[4] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[5] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[6] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[7] | 陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214. |
[8] | 丁浩明, 陈科, 李勉, 李友兵, 柴之芳, 黄庆. 无机材料的“化学剪刀”结构编辑策略[J]. 无机材料学报, 2024, 39(2): 115-128. |
[9] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[10] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[11] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[12] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[13] | 郑嘉乾, 卢霄, 鲁亚杰, 王迎军, 王臻, 卢建熙. 医用生物陶瓷的功能性生物适配机制及应用[J]. 无机材料学报, 2024, 39(1): 1-16. |
[14] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[15] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||