无机材料学报 ›› 2023, Vol. 38 ›› Issue (5): 544-552.DOI: 10.15541/jim20220532 CSTR: 32189.14.10.15541/jim20220532
所属专题: 【结构材料】热障与环境障涂层(202409)
范栋1,2(), 钟鑫1(), 王亚文1, 张振忠2(), 牛亚然1, 李其连3, 张乐3, 郑学斌1
收稿日期:
2022-09-13
修回日期:
2022-10-06
出版日期:
2022-10-28
网络出版日期:
2022-10-28
通讯作者:
钟 鑫, 助理研究员. E-mail: zhongxin@mail.sic.ac.cn;作者简介:
范 栋(1998-), 男, 硕士研究生. E-mail: fandong1998@126.com
基金资助:
FAN Dong1,2(), ZHONG Xin1(), WANG Yawen1, ZHANG Zhenzhong2(), NIU Yaran1, LI Qilian3, ZHANG Le3, ZHENG Xuebin1
Received:
2022-09-13
Revised:
2022-10-06
Published:
2022-10-28
Online:
2022-10-28
Contact:
ZHONG Xin, assistant professor. E-mail: zhongxin@mail.sic.ac.cn;About author:
FAN Dong (1998-), male, Master candidate. E-mail: fandong1998@126.com
Supported by:
摘要:
稀土硅酸盐环境障涂层(EBCs)有望应用于新一代高推重比航空发动机热端部件, 但是服役条件下的熔盐腐蚀成为限制其应用的瓶颈。CMAS组分和稀土硅酸盐的晶体结构等因素对其腐蚀行为产生显著影响。本工作以不同晶型的稀土硅酸盐涂层材料为研究对象, 采用大气等离子喷涂技术制备X1-Gd2SiO5、X2-RE2SiO5(RE=Y, Er)涂层, 并研究其在富Al2O3的CMAS熔盐环境(1400 ℃)的腐蚀行为与机制。结果表明, X2-RE2SiO5(RE=Y, Er)涂层耐蚀性能优于X1-Gd2SiO5涂层, 这与涂层材料的物相组成和晶体结构的稳定性等因素有关。经CMAS腐蚀25 h后, X1-Gd2SiO5涂层表面仅生成磷灰石相; X2-RE2SiO5涂层不仅生成磷灰石相, 涂层中的RE2O3还与CMAS中的Al2O3反应生成石榴石相。生成石榴石相可提高涂层表面CMAS中CaO、SiO2的相对含量, 促进磷灰石致密层的生成, 从而改善其耐蚀性能。
中图分类号:
范栋, 钟鑫, 王亚文, 张振忠, 牛亚然, 李其连, 张乐, 郑学斌. 富铝CMAS对稀土硅酸盐环境障涂层的腐蚀行为与机制研究[J]. 无机材料学报, 2023, 38(5): 544-552.
FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings:[J]. Journal of Inorganic Materials, 2023, 38(5): 544-552.
Parameter | RE2SiO5 (RE=Gd, Y, Er) |
---|---|
Primary Ar/(L·min-1) | 43 |
Secondary H2/(L·min-1) | 12 |
Carrier Ar/(L·min-1) | 2.3 |
Spray distance/mm | 230 |
表1 等离子喷涂工艺参数
Table 1 Technical parameters used for plasma spraying
Parameter | RE2SiO5 (RE=Gd, Y, Er) |
---|---|
Primary Ar/(L·min-1) | 43 |
Secondary H2/(L·min-1) | 12 |
Carrier Ar/(L·min-1) | 2.3 |
Spray distance/mm | 230 |
XRF/(%,in mol) | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 27.87 | 8.79 | 26.22 | 38.52 |
表2 CMAS粉体的XRF化学元素组成
Table 2 Chemical compositions of CMAS powders
XRF/(%,in mol) | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 27.87 | 8.79 | 26.22 | 38.52 |
图3 涂层经CMAS腐蚀4和25 h后的表面形貌
Fig. 3 Surface microstructures of coatings after corrosion for 4 and 25 h (a-b) X1-Gd2SiO5; (c-d) X2-Y2SiO5; (e-f) X2-Er2SiO5
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 20.60 | — | — | 19.62 | 51.73 | 8.02 | — | — |
Point 2 | — | 26.04 | — | 17.55 | 50.57 | 5.83 | — | — |
Point 3 | — | — | 26.95 | 15.16 | 50.78 | 7.10 | — | — |
Point 4 | — | 14.03 | — | 5.72 | 52.27 | 4.01 | 20.31 | 3.66 |
表3 图3中标记区域的EDS元素组成
Table 3 EDS elemental compositions of the marked regions in Fig. 3
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 20.60 | — | — | 19.62 | 51.73 | 8.02 | — | — |
Point 2 | — | 26.04 | — | 17.55 | 50.57 | 5.83 | — | — |
Point 3 | — | — | 26.95 | 15.16 | 50.78 | 7.10 | — | — |
Point 4 | — | 14.03 | — | 5.72 | 52.27 | 4.01 | 20.31 | 3.66 |
图4 涂层经CMAS腐蚀4 h后的截面形貌
Fig. 4 Cross-sectional microstructures of coatings after CMAS corrosion for 4 h (a, b) X1-Gd2SiO5; (c, d) X2-Y2SiO5; (e, f) X2-Er2SiO5
EDS/(%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 19.21 | — | —- | 11.70 | 60.65 | 8.44 | — | — |
Point 2 | 1.16 | — | — | 13.06 | 59.37 | 13.78 | 10.18 | 2.45 |
Point 3 | — | 15.29 | — | 16.00 | 61.82 | 6.89 | — | — |
Point 4 | — | 7.18 | — | 15.50 | 50.17 | 9.58 | 12.14 | 5.43 |
Point 5 | — | 0.96 | — | 13.56 | 59.62 | 13.03 | 10.40 | 2.42 |
Point 6 | — | — | 20.27 | 12.11 | 61.12 | 6.50 | — | — |
Point 7 | — | — | 8.70 | 10.95 | 59.15 | 8.09 | 10.95 | 4.65 |
Point 8 | — | — | 0.92 | 3.29 | 58.74 | 19.61 | 3.29 | 2.07 |
表4 中标记区域的EDS元素组成
Table 4 EDS elemental compositions of the marked regions in Fig. 4
EDS/(%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 19.21 | — | —- | 11.70 | 60.65 | 8.44 | — | — |
Point 2 | 1.16 | — | — | 13.06 | 59.37 | 13.78 | 10.18 | 2.45 |
Point 3 | — | 15.29 | — | 16.00 | 61.82 | 6.89 | — | — |
Point 4 | — | 7.18 | — | 15.50 | 50.17 | 9.58 | 12.14 | 5.43 |
Point 5 | — | 0.96 | — | 13.56 | 59.62 | 13.03 | 10.40 | 2.42 |
Point 6 | — | — | 20.27 | 12.11 | 61.12 | 6.50 | — | — |
Point 7 | — | — | 8.70 | 10.95 | 59.15 | 8.09 | 10.95 | 4.65 |
Point 8 | — | — | 0.92 | 3.29 | 58.74 | 19.61 | 3.29 | 2.07 |
图5 X1-Gd2SiO5与X2-RE2SiO5(RE=Y, Er)涂层腐蚀25 h后的截面形貌
Fig. 5 Cross-sectional microstructures of the X1-Gd2SiO5 coating after corrosion for 25 h (a) X1-Gd2SiO5; (b) X2-Y2SiO5; (c) X2-Er2SiO5
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 24.48 | — | — | 16.22 | 51.61 | 7.68 | — | — |
Point 2 | 1.05 | — | — | 12.62 | 59.63 | 14.25 | 9.78 | 2.66 |
Point 3 | — | 26.70 | — | 15.78 | 50.12 | 7.40 | — | — |
Point 4 | — | 17.10 | — | 8.23 | 51.25 | 2.92 | 16.41 | 4.09 |
Point 5 | — | 0.94 | — | 14.23 | 57.36 | 13.94 | 11.98 | 1.54 |
Point 6 | — | — | 28.80 | 12.77 | 52.22 | 6.22 | — | — |
Point 7 | — | — | 7.12 | 13.05 | 49.26 | 7.08 | 18.26 | 5.24 |
表5 图5中标记区域的EDS元素组成
Table 5 EDS elemental compositions of the marked regions in Fig. 5
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 24.48 | — | — | 16.22 | 51.61 | 7.68 | — | — |
Point 2 | 1.05 | — | — | 12.62 | 59.63 | 14.25 | 9.78 | 2.66 |
Point 3 | — | 26.70 | — | 15.78 | 50.12 | 7.40 | — | — |
Point 4 | — | 17.10 | — | 8.23 | 51.25 | 2.92 | 16.41 | 4.09 |
Point 5 | — | 0.94 | — | 14.23 | 57.36 | 13.94 | 11.98 | 1.54 |
Point 6 | — | — | 28.80 | 12.77 | 52.22 | 6.22 | — | — |
Point 7 | — | — | 7.12 | 13.05 | 49.26 | 7.08 | 18.26 | 5.24 |
图6 不同涂层在1400 ℃下CMAS熔盐腐蚀的示意图
Fig. 6 Schematic diagrams of different coatings under CMAS molten salt corrosion at 1400 ℃ (a) Reaction process; (b) X1-Gd2SiO5; (c) X2-Y2SiO5; (d) X2-Er2SiO5
[1] |
PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15(8): 804.
DOI PMID |
[2] |
RAJ R. Fundamental research in structural ceramics for service near 2000 ℃. Journal of the American Ceramic Society, 1993, 76(9): 2147.
DOI URL |
[3] |
EATON H E, LINSEY G D. Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach. Journal of the European Ceramic Society, 2002, 22(14-15): 2741.
DOI URL |
[4] |
LIU P P, ZHONG X, ZHANG L, et al. Molten salt corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coating. Journal of Inorganic Materials, 2022, 37(12): 1267.
DOI |
[5] |
OPILA E J. Oxidation and volatilization of silica formers in water vapor. Journal of the American Ceramic Society, 2003, 86(8): 1238.
DOI URL |
[6] |
ZHANG X F, SONG J B, DENG Z Q, et al. Interface evolution of Si/Mullite/Yb2SiO5 PS-PVD environmental barrier coatings under high temperature. Journal of the European Ceramic Society, 2020, 40(4): 1478.
DOI URL |
[7] |
TIAN Z L, ZHENG L Y, WANG J M, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE= Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2016, 36(1): 189.
DOI URL |
[8] |
ZHANG X F, ZHOU K S, LIU M, et al. Preparation of Si/Mullite/Yb2SiO5environment barrier coating (EBC) by plasma spray-physical vapor deposition (PS-PVD). Journal of Inorganic Materials, 2018, 33(3): 325.
DOI URL |
[9] | SUMMERS W D, POERSCHKE D L, TAYLOR A A, et al. Reactions of molten silicate deposits with yttrium monosilicate. Journal of the European Ceramic Society, 2020, 103(4): 2919. |
[10] |
STOLZENBURG F, KENESEI P, ALMER J, et al. The influence of calcium-magnesium-aluminosilicate deposits on internal stresses in Yb2Si2O7 multilayer environmental barrier coatings. Acta Materialia, 2016, 105: 189.
DOI URL |
[11] | WANG C, ZHANG X F, ZHOU K S, et al. Nano-composite structured environmental barrier coatings prepared by plasma spray- physical vapor deposition and their thermal cycle performance. Rare Metal Materials and Engineering, 2019, 48(11): 3455. |
[12] |
LI G, QIN L, CAO X Q, et al. Water vapor corrosion resistance and failure mechanism of SiCf/SiC composites completely coated with plasma sprayed tri-layer EBCs. Ceramics International, 2022, 48(5): 7082.
DOI URL |
[13] |
LEE K N. Yb2Si2O7 Environmental barrier coatings with reduced bond coat oxidation rates via chemical modifications for long life. Journal of the American Ceramic Society, 2019, 102(3): 1507.
DOI URL |
[14] |
WANG J G, TIAN S J, LI G B, et al. Preparation and X-ray characterization of low-temperature phases of R2SiO5 (R=rare earth elements). Materials of Research Bulletin, 2001, 36: 1855.
DOI URL |
[15] |
WOLF M, MACK D E, GUILLO O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium- aluminosilicate (CMAS): a comparative study. Journal of the American Ceramic Society, 2020, 103(12): 7056.
DOI URL |
[16] |
JIANG F R, CHENG L F, WANG Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium- aluminosilicate attack. Ceramics International, 2017, 43(12): 9019.
DOI URL |
[17] |
ZHONG X, WANG Y W, LIU P P, et al. Effects of microstructure on corrosion behaviors for RE2SiO5 (RE=Gd, Y, Er) environmental barrier coatings against calcium-magnesium-alumino-silicate melts. Corrosion Science, 2022, 199: 110174.
DOI URL |
[18] |
TIAN Z L, REN X M, LEI Y M, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. Journal of the European Ceramic Society, 2019, 39(14): 4245.
DOI URL |
[19] |
LIU P P, ZHONG X, NIU Y R, et al. Reaction behaviors and mechanisms of tri-layer Yb2SiO5/Yb2Si2O7/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. Corrosion Science, 2022, 197: 110069.
DOI URL |
[20] |
STOKES J L, HARDER B J, WIESNER V L, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials. Journal of the American Ceramic Society, 2019, 103(1): 622.
DOI URL |
[21] |
SUMMERS W D, POERSCHKE D L, PARK D, et al. Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate. Acta Materialia, 2018, 160: 34.
DOI URL |
[22] |
LEVI C G, JOHN W H, MARIE V S, et al. Environmental degradation of thermal barrier coatings by molten deposits. MRS Bulletin, 2012, 37: 932.
DOI URL |
[23] |
BONDAR I A, Rare-earth silicates. Ceramics International, 1982, 8: 83.
DOI URL |
[24] | FELSCHE J. The crystal chemistry of the rare-earth silicates. Materials Science and Chemistry, 1973, 13: 99. |
[25] |
ZHONG X, NIU Y R, LI H, et al. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. Journal of the American Ceramic Society. 2017, 100(5): 1896.
DOI URL |
[26] |
POERSCHKE D L, JACKSON R W, LEVI C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annual Review of Materials Research, 2017, 47: 297.
DOI URL |
[27] |
LI Y R, WANG J M, WANG J Y. Theoretical investigation of phonon contributions to thermal expansion coefficients for rare earth monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu). Journal of the European Ceramic Society, 2020, 40(7): 2658.
DOI URL |
[1] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[2] | 李捷, 罗志新, 崔阳, 张广珩, 孙鲁超, 王京阳. 大气等离子喷涂Y3Al5O12/Al2O3陶瓷涂层的CMAS腐蚀抗力[J]. 无机材料学报, 2024, 39(6): 671-680. |
[3] | 罗淑文, 马名生, 刘峰, 刘志甫. Ca-B-Si体系LTCC材料腐蚀行为及腐蚀机理[J]. 无机材料学报, 2023, 38(5): 553-560. |
[4] | 刘平平, 钟鑫, 张乐, 李红, 牛亚然, 张翔宇, 李其连, 郑学斌. 硅酸镱环境障涂层抗熔盐腐蚀行为与机制研究[J]. 无机材料学报, 2022, 37(12): 1267-1274. |
[5] | 孙鲁超, 任孝旻, 杜铁锋, 罗颐秀, 张洁, 王京阳. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略[J]. 无机材料学报, 2021, 36(4): 339-346. |
[6] | 范佳锋,张小锋,周克崧,刘敏,邓畅光,邓春明,牛少鹏,邓子谦. 镀铝改性对PS-PVD 7YSZ热障涂层抗CMAS腐蚀影响机制[J]. 无机材料学报, 2019, 34(9): 938-946. |
[7] | 王鹏, 王庆雷, 张翔宇, 杨金山, 周海军, 胡建宝, 丁玉生, 董绍明. 层状硅酸钇改性SiCf/SiC复合材料湿氧化行为研究[J]. 无机材料学报, 2019, 34(8): 904-908. |
[8] | 张小锋, 周克崧, 刘敏, 邓春明, 牛少鹏, 许世鸣. 等离子喷涂-物理气相沉积Si/莫来石/Yb2SiO5环境障涂层[J]. 无机材料学报, 2018, 33(3): 325-330. |
[9] | 张小锋, 周克崧, 宋进兵, 邓春明, 牛少鹏, 邓子谦. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及 其CMAS腐蚀失效机制[J]. 无机材料学报, 2015, 30(3): 287-293. |
[10] | 关永军,夏原. 铝合金表面等离子体电解氧化陶瓷涂层在NaCl溶液中的电化学阻抗谱研究[J]. 无机材料学报, 2008, 23(4): 784-788. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||