无机材料学报 ›› 2022, Vol. 37 ›› Issue (5): 473-480.DOI: 10.15541/jim20210513 CSTR: 32189.14.10.15541/jim20210513
所属专题: 【结构材料】高熵陶瓷(202409)
• 综述 • 下一篇
收稿日期:
2021-08-19
修回日期:
2021-10-21
出版日期:
2022-05-20
网络出版日期:
2021-10-21
通讯作者:
王一光, 教授. E-mail: wangyiguang@bit.edu.cn
作者简介:
刘金铃(1983-), 男, 教授. E-mail: liujinling@swjtu.edu.cn;
基金资助:
LIU Jinling1(), LIU Dianguang2, REN Ke3, WANG Yiguang3(
)
Received:
2021-08-19
Revised:
2021-10-21
Published:
2022-05-20
Online:
2021-10-21
Contact:
WANG Yiguang, professor. E-mail: wangyiguang@bit.edu.cn
About author:
LIU Jinling (1983-), male, professor. E-mail: liujinling@swjtu.edu.cn
Supported by:
摘要:
闪烧是近些年广受关注的一种电场辅助烧结技术。本文介绍了闪烧的起源与发展, 并对闪烧的基本特征进行了分析。在闪烧孕育与引发过程的研究方面, 发现了孕育阶段的非线性电导特征和电化学黑化现象, 提出了氧空位主导的缺陷机制; 在闪烧阶段的快速致密化研究方面, 提出了电场作用导致的缺陷产生和运动会在粉体颗粒间产生库仑力, 有利于烧结前期的致密化过程, 同时发现闪烧致密化过程中还伴随着金属阳离子的快速运动; 在闪烧阶段的晶粒生长和微结构演变方面, 发现了试样温度沿电流方向呈非对称分布, 试样中间位置的晶界迁移率明显提高, 提出电化学缺陷对微观结构有重大影响。基于上述研究成果, 本团队利用电场作用下出现的低温快速传质现象, 发展了陶瓷闪焊技术, 实现了同种陶瓷/陶瓷、陶瓷/金属, 甚至异种陶瓷/陶瓷之间的快速连接; 发展了陶瓷闪烧合成技术, 不仅实现了典型氧化物陶瓷的快速合成, 而且实现了高熵陶瓷和具有共晶形貌的氧化物陶瓷的快速合成; 发展了氧化物陶瓷的电塑性成形技术, 初步实现了氧化锆陶瓷低温低应力下的快速拉伸和弯曲变形。本文最后总结了闪烧机理研究面临的挑战, 并从焦耳热效应和非焦耳热效应两方面展望了闪烧的发展方向, 期望对闪烧技术在国内的发展有所裨益。
中图分类号:
刘金铃, 刘佃光, 任科, 王一光. 氧化物陶瓷闪烧机理及其应用研究进展[J]. 无机材料学报, 2022, 37(5): 473-480.
LIU Jinling, LIU Dianguang, REN Ke, WANG Yiguang. Research Progress on the Flash Sintering Mechanism of Oxide Ceramics and Its Application[J]. Journal of Inorganic Materials, 2022, 37(5): 473-480.
图3 (a)闪烧氧化钇稳定氧化锆陶瓷样品出现的电化学黑化现象和(b)闪烧后样品的电子顺磁共振波谱
Fig. 3 (a) Electrochemical blackening of flash sintered 3YSZ ceramic and (b) EPR result of the flash sintered 3YSZ sample
图5 8YSZ陶瓷试样表面温度在闪烧稳态阶段随位置的变化曲线[15]
Fig. 5 Change of the surface temperature of 8YSZ sample as a function of distance from cathode at the steady stage during the flash sintering[15]
[1] | COLOGNA M, RASHKOVA B, RAJ R. Flash sintering of nanograin zirconia in <5 s at 850 ℃. J. Am. Ceram. Soc., 2010,93(11):3556-3559. |
[2] | REN K, LIU J, WANG Y. Flash sintering of yttria-stabilized zirconia: Fundamental understanding and applications. Scripta Mater., 2020,187:371-378. |
[3] | 傅正义, 季伟, 王为民. 陶瓷材料闪烧技术研究进展. 硅酸盐学报, 2017,45(9):1211-1219. |
[4] | 谢志鹏, 许靖堃, 安迪. 先进陶瓷材料烧结新技术研究进展. 中国材料进展, 2019,38(9):821-830. |
[5] | 苏兴华, 吴亚娟, 安盖, 等. 陶瓷材料闪烧机理研究进展. 硅酸盐学报, 2020,48(12):1872-1879. |
[6] | YU M, GRASSO S, MCKINNON R,et al. Review of flash sintering: materials, mechanisms and modelling. Adv. Appl. Ceram., 2017,116(1):24-60. |
[7] | BIESUZ M, SGLAVO V M. Flash sintering of ceramics. J. Eur. Ceram. Soc., 2019,39:115-143. |
[8] | LIU D, CAO Y, LIU J,et al. Effect of oxygen partial pressure on temperature for onset of flash sintering 3YSZ. J. Eur. Ceram. Soc., 2018,38:817-820. |
[9] | ZAPATA-SOLVAS E, BONILLA S, WILSHAW P R,et al. Preliminary investigation of flash sintering of SiC. J. Eur. Ceram. Soc., 2013,33:2811-2816. |
[10] | ZHANG Y, NIE J, CHAN J M,et al. Probing the densification mechanisms during flash sintering of ZnO. Acta Mater., 2017,125:465-475. |
[11] | COLOGNA M, FRANCIS J S C, RAJ R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO- doping. J. Eur. Ceram. Soc., 2011,31:2827-2837. |
[12] | LEBRUN J M, RAJ R. A first report of photoemission in experiments related to flash sintering. J. Am. Ceram. Soc., 2014,97(8):2427-2430. |
[13] | GAO Y, LIU F, LIU D. Electrical-field induced nonlinear conductive behavior in dense zirconia ceramic. J. Mater. Sci. Technol., 2017,33:897-900. |
[14] | XIA J, REN K, WANG Y,et al. Reversible flash-bonding of zirconia and nickel alloys. Scripta Mater., 2018,153:31-34. |
[15] | LIU G. LIU D, LIU J,et al. Asymmetric temperature distribution during steady stage of flash sintering dense zirconia. J. Eur. Ceram. Soc., 2018,38:2893-2896. |
[16] | LIU J, LIU D, WANG Y, et al. The Onset of Flash Sintering 8YSZ. ECI Conference on Electric Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities, Tomar, Portugal, March 10-15, 2019. |
[17] | YADAV D, RAJ R. The onset of the flash transition in single crystals of cubic zirconia as a function of electric field and temperature. Scripta Mater., 2017,134:123-127. |
[18] | JO S, RAJ R. Transition to electronic conduction at the onset of flash in cubic zirconia. Scripta Mater., 2020,174:29-32. |
[19] | COLOGNA M, PRETTE A L G, RAJ R. Flash-sintering of cubic yttria-stabilized zirconia at 750 ℃ for possible use in SOFC manufacturing. J. Am. Ceram. Soc., 2011,94(2):316-319. |
[20] | DONG Y, CHEN I W. Predicting the onset of flash sintering. J. Am. Ceram. Soc., 2015,98(8):2333-2335. |
[21] | ZHANG Y, JUNG J, LUO J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater., 2015,94:87-100. |
[22] | TODD R I, ZAPATA-SOLVAS E, BONILLA R S. Electrical characteristics of flash sintering: thermal runaway of Joule heating. J. Eur. Ceram. Soc., 2015,35:1865-1877. |
[23] | FRANCIS J S C, RAJ R. Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J. Am. Ceram. Soc., 2012,95(1):138-146. |
[24] | REN K, WANG Q, LIAN Y,et al. Densification kinetics of flash sintered 3mol% Y2O3 stabilized zirconia. J. Alloys Compd., 2018,747:1073-1077. |
[25] | REN K, HUANG S, CAO Y,et al. The densification behavior of flash sintered BaTiO3. Scripta Mater., 2020,186:362-365. |
[26] | LIU D, LI X, LIU F,et al. Effect of the current density on the densification of 3mol% yttria-stabilized zirconia in flash sintering. J. Alloys Compd., 2020,825:154061. |
[27] | LIU J, LIU D, WANG Y, et al. Flash sintering yttria-stablized zirconia (3Y-TZP) and zirconia-3mol%yttria nanocomposites. 39th international conference and exposition on advanced ceramics and composites, Daytona Beach, USA, January 25-30, 2015. |
[28] | LIU D, GAO Y, LIU J,et al. Effect of holding time on the microstructure and properties of flash sintered Y2O3-doped ZrO2. Ceram. Int., 2016,42:17442-17446. |
[29] | JI W, PARKER B, FALCO S,et al. Ultra-fast firing: Effect of heating rate on sintering of 3YSZ, with and without an electric field, J. Eur. Ceram. Soc., 2017,37:2547-2551. |
[30] | NARAYAN J. A new mechanism for field-assisted processing and flash sintering of materials. Scripta Mater., 2013,69:107-111. |
[31] | ZHU F, PENG X, LIU J,et al. Surface temperature distribution on dense 8YSZ ceramics during the steady stage in AC flash sintering. Ceram. Int., 2021,47:2884-2887. |
[32] | REN K, XIA J, WANG Y. Grain growth kinetics of 3mol% yttria-stabilized zirconia during flash sintering. J. Eur. Ceram. Soc., 2019,39:1366-1373. |
[33] | LIU D, LIU J, GAO Y,et al. Effect of the applied electric field on the microstructure and electrical properties of flash-sintered 3YSZ ceramics. Ceram. Int., 2016,42:19075-19079. |
[34] | XIA J, REN K, WANG Y. Reversible joining of zirconia to titanium alloy. Ceram. Int., 2019,45:2509-2515. |
[35] | XIA J, REN K, WANG Y. One-second flash joining of zirconia ceramic by an electric field at low temperatures. Scripta Mater., 2019,165:34-38. |
[36] | XIA J, REN K, LIU W,et al. Ultrafast joining of zirconia ceramics using electric field at low temperatures. J. Eur. Ceram. Soc., 2019,39:3173-3179. |
[37] | XIA J, REN K, WANG Y. Flash joining of alumina ceramics under a small current density. J. Eur. Ceram. Soc., 2021,41:2782-2789. |
[38] | XIA J, REN K, WANG Y. Rapid joining of heterogeneous ceramics with a composite interlayer under the action of an electric field. J. Eur. Ceram. Soc., 2021,41:7164-7169. |
[39] | XIAO W, NI N, FAN X,et al. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide, J. Mater. Sci. Technol., 2021,60:70-76. |
[40] | JIA Y, SU X, WU Y,et al. Flash sintering of 3YSZ/Al2O3-platelet composites. J. Am. Ceram. Soc., 2020,103:2351-2361. |
[41] | XU C, WANG L, BAI B,et al. Rapid synthesis of Gd2Zr2O7 ceramics by flash sintering and its aqueous durability. J. Eur. Ceram. Soc., 2020,40:1620-1625. |
[42] | ZHANG H, WANG Y, LIU J,et al. Reaction assisted flash sintering of Al2O3-YAG ceramic composites with eutectic composition. Ceram. Int., 2019,45:13551-13555. |
[43] | LIAN Y, REN K, WANG Q,et al. Rapid immobilization of simulated radionuclide Nd at low temperatures by flash reaction. Ceram. Int., 2019,45:22388-22393. |
[44] | ZHU Y, MA B, WANG K,et al. Electric field-assisted solid-state reaction of BaCO3-TiO2 system. J. Am. Ceram. Soc., 2021,104:6572-6578. |
[45] | REN K, CAO Y, CHEN Y,et al. Flash sintering of Na3Zr2(SiO4)2 (PO4) solid-state electrolyte at furnace temperature of 700 ℃. Scripta Mater., 2020,187:384-389. |
[46] | LIU D, PENG X, LIU J,et al. Ultrafast synthesis of entropy- stabilized oxide at room temperature. J. Eur. Ceram. Soc., 2020,40:2504-2508. |
[47] | LI W, CHEN L, LIU D,et al. Ultra-low temperature reactive flash sintering synthesis of high-enthalpy and high-entropy Ca0.2Co0.2 Ni0.2Cu0.2Zn0.2O oxide ceramics. Mater. Lett., 2021,304:130679. |
[48] | WANG K, MA B, LI T,et al. Fabrication of high-entropy perovskite oxide by reactive flash sintering. Ceram. Int., 2020,46:18358-18361. |
[49] | LIU J, REN K, MA C,et al. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic. Ceram. Int., 2020,46:20576-20581. |
[50] | LIU J, XU X, LIU D,et al. Ultrafast formation of Al2O3-Y3Al5O12 eutectic ceramic by flash sintering. J. Am. Ceram. Soc., 2020,103:4051-4056. |
[51] | XU X, FAN J, LIU J,et al. Formation of eutectic structure in dense Al2O3-YAG composite by electric field treatment. Ceram. Int., 2021,47:23647-23652. |
[52] | YAO S, LIU D, LIU J,et al. Ultrafast preparation of Al2O3-ZrO2 multiphase ceramics with eutectic morphology via flash sintering. Ceram. Int., 2021,47:31555-31560. |
[53] | LU S, LIU J, SHAO G,et al. On the electric conduction of ZrO2 in the steady stage of flash sintering. Ceram. Int., 2020,46:5715-5718. |
[54] | LIU D, LIU J, WANG Y, et al. DC Electric Field Assisted 3YSZ Ceramic Superplastic Deformation. ECI Conference on Electric Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities, Tomar, Portugal, March 10-15, 2019. |
[55] | WANG C, PING W, BAI Q,et al. A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020,368:521-526. |
[56] | JONGMANNS M, RAJ R, WOLF D E. Generation of Frenkel defects above the Debye temperature by proliferation of phonons near the Brillouin zone edge. New J. Phys., 2018,20:093013. |
[57] | JONES G M, BIESUZ M, JI W,et al. Promoting microstructural homogeneity during flash sintering of ceramics through thermal management. MRS Bull., 2021,46:59-66. |
[58] | GUILLON O, DE SOUZA R A, MISHRA T P, RHEINHEIMER W. Electric-field-assisted processing of ceramics: nonthermal effects and related mechanisms. MRS Bull., 2021,46:52-58. |
[59] | RAJ R. KULKARNI A, LEBRUN J M,et al. Flash sintering: A new frontier in defect physics and materials science. MRS Bull., 2021,46:36-43. |
[60] | MA B, ZHU Y, WANG K,et al. Microstructure and dielectric property of flash sintered SiO2-coated BaTiO3 ceramics. Scripta Mater., 2019,170:1-5. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||