无机材料学报 ›› 2021, Vol. 36 ›› Issue (10): 1039-1046.DOI: 10.15541/jim20200682 CSTR: 32189.14.10.15541/jim20200682
收稿日期:
2020-11-30
修回日期:
2021-04-13
出版日期:
2021-10-20
网络出版日期:
2021-04-25
作者简介:
李翠霞(1972-), 女, 副教授. E-mail: licx2007@lut.cn
基金资助:
Li Cuixia(), SUN Huizhen, JIN Haize, SHI Xiao, LI Wensheng, KONG Wenhui
Received:
2020-11-30
Revised:
2021-04-13
Published:
2021-10-20
Online:
2021-04-25
About author:
LI Cuixia(1972-), female, associate professor. E-mail: licx2007@lut.cn
Supported by:
摘要:
研究以聚苯乙烯(PS)微球为模板、氧化石墨烯(GO)和钛酸四丁酯(TBT)为原料, 采用溶胶-凝胶法, 利用GO与PS上的官能团和TiO2前驱体的多重配位反应, 制备了3D多级孔rGO/TiO2(PS)复合材料。通过不同手段对样品的结构和形貌进行表征, 研究了PS添加量对rGO/TiO2复合材料晶体结构、微观形貌及光催化性能的影响。分别在模拟紫外光和可见光下, 以盐酸四环素(TTCH)为目标污染物对不同PS加入量制备的3D多级孔rGO/TiO2(PS)复合材料的光催化性能进行评价, 并在模拟可见光下, 对3D多级孔rGO/TiO2(5wt%PS)复合材料进行了多次循环回收测试。结果表明: rGO/TiO2(PS)复合材料具有3D多级孔块体结构, GO作为基体的增强相通过Ti-O-C键保持多级孔刚性骨架结构的稳定。引入PS增大了rGO/TiO2(PS)复合材料的比表面积, 3D多级孔rGO/TiO2(7wt% PS)复合材料对TTCH吸附效率最高, 而3D多级孔rGO/TiO2(5wt%PS)复合材料光催化活性和稳定性最高, 且经过4次循环回收测试, 其光催化效率仍达81.02%; 模板剂PS的最佳引入量为5wt%。
中图分类号:
李翠霞, 孙会珍, 金海泽, 史晓, 李文生, 孔文慧. 3D多级孔rGO/TiO2复合材料的构筑及其光催化性能研究[J]. 无机材料学报, 2021, 36(10): 1039-1046.
Li Cuixia, SUN Huizhen, JIN Haize, SHI Xiao, LI Wensheng, KONG Wenhui. Construction and Photocatalytic Performance of 3D Hierarchical Pore rGO/TiO2 Composites[J]. Journal of Inorganic Materials, 2021, 36(10): 1039-1046.
图2 PS(a)和rGO/TiO2(b)的TEM照片, rGO/TiO2(5wt%PS)复合材料的SEM照片(c)(插图为对应TEM照片)及rGO/TiO2 (5wt%PS)的O, C和Ti的HADDF图像和EDS面分布(d)
Fig. 2 TEM images of PS(a) and rGO/TiO2(b), SEM image (c) of rGO/TiO2 (5wt%PS) composite (inset displaying TEM image) and HADDF image and EDS mappings of O, C and Ti in rGO/TiO2 (5wt%PS)(d)
图4 rGO/TiO2和rGO/TiO2(5wt%PS)的氮气吸附-脱附等温线(a)和孔径分布曲线(b)
Fig. 4 Nitrogen adsorption-desorption isotherms (a) and pore diameter distribution curves (b) of rGO/TiO2 and rGO/TiO2 (5wt%PS)
图5 TiO2、rGO/TiO2和rGO/TiO2(5wt%PS)的紫外-可见漫反射光谱(a)及其禁带宽度(b); TiO2和不同PS加入量制备的rGO/TiO2(PS)复合材料的荧光发射光谱(c)
Fig. 5 UV-visible diffuse reflection spectra (a) and band gap width (b) of TiO2, rGO/TiO2 and rGO/TiO2(5wt%PS); fluorescence emission spectra of TiO2 and rGO/TiO2(PS) prepared with different PS additions (c) Colorful images are available on website
图6 rGO/TiO2(5wt%PS)样品的XPS能谱分析
Fig. 6 X-ray photoelectron spectra of rGO/TiO2(5wt%PS) (a) full spectrum; (b) O1s; (c) C1s; (d) Ti2p Colorful images are available on website
图7 TiO2及不同PS加入量制备的rGO/TiO2(PS)复合材料的吸附率(a), 可见光(b)和紫外光(c)下的光催化效率
Fig. 7 Adsorption rate (a), photocatalytic efficiency under visible light (b) and ultraviolet light (c) of TiO2 and rGO/TiO2(PS) prepared with different PS additions Colorful images are available on website
图8 rGO/TiO2(5wt%PS)样品回收循环测试(a), rGO/TiO2和rGO/TiO2(5wt%PS)的光催化反应动力学拟合分析(b)
Fig. 8 Recycling test of rGO/TiO2(5wt%PS) sample (a), and Kinetic fitting analysis of photocatalytic reaction of rGO/TiO2 and rGO/TiO2(5wt%PS) (b)
图9 多级孔rGO/TiO2(PS)复合材料光催化降解盐酸四环素的机理图
Fig. 9 Mechanism diagram of photocatalytic degradation of tetracycline hydrochloride by hierarchical pore rGO/TiO2(PS) composite material
[1] |
YANG X, CAO C, ERICKSON L, et al. Photo-catalytic degradation of rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible- light irradiation. Applied Catalysis B Environmental, 2009, 91(3/4):657-662.
DOI URL |
[2] |
WANG X, DENG H, JIANG Z, et al. Photocatalytic reduction of Re (VII) on amorphous TiO2/g-C3N4 derived from different N sources. Journal of Inorganic Materials, 2020, 35(12):1340-1348.
DOI URL |
[3] | QU R, LIU N, CHEN Y,, et al. Morphology-Induced TiO2 bandgap change for super rapid treatment of dye wastewater under visible light. Advanced Materials Technologies, 2017, 2: 1700125-1-7. |
[4] | MKHALID I A, FIERRO J L, MOHAMED R M, et al. Visible light driven photooxidation of imazapyr herbicide over highly efficient mesoporous Ag/Ag2O-TiO2 p-n heterojunction photocatalysts. Ceramics International, 2020, 46(16):25822-25832. |
[5] |
CHANDRA R, MUKHOPADHYAY S, NATH M. TiO2@ZIF-8: a novel approach of modifying micro-environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles. Materials Letters, 2016, 164:571-574.
DOI URL |
[6] | WANG X, XUAN X, WANG Y, et al. Nano-Au-modified TiO2 grown on dendritic porous silica particles for enhanced CO2 photoreduction. Microporous and Mesoporous Materials, 2021, 310:110635. |
[7] | BIAN H, ZHANG Z, XU X, et al. Photocatalytic activity of Ag/ZnO/AgO/TiO2 composite. Physica E Low-dimensional Systems and Nanostructures, 2020, 124:114236. |
[8] |
CAUDILLO-FLORES U, LARA-ROMERO J, ZÁRATE-MEDINA J, et al. Enhanced photocatalytic activity of MWCNT/TiO2 heterojunction photocatalysts obtained by microwave assisted synthesis. Catalysis Today, 2016, 266:102-109.
DOI URL |
[9] |
XIANG Q J, CHENG B, YU J C, et al. Graphene-based photocatalysts for solar-fuel generation. Angewandte Chemie International Edition, 2015, 54(39):11350-11366.
DOI URL |
[10] | LI Q, LI X, WAGEH S, et al. CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015, 5(14):1500010. |
[11] |
HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6):1339.
DOI URL |
[12] |
JIN Y H, LI C M, ZHANG Y F. Preparation and visible-light driven photocatalytic activity of the rGO/TiO2/BiOI heterostructure for methyl orange degradation. New Carbon Materials, 2020, 35(4):394-400.
DOI URL |
[13] | ZHANG L, QI H, ZHAO Y, et al. Au nanoparticle modified three- dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance. Applied Surface Science, 2019, 498:143855. |
[14] |
TOLOSANA-MORANCHEL Á, MANASSERO A, SATUF M L, et al. Influence of TiO2-rGO optical properties on the photocatalytic activity and efficiency to photodegrade an emerging pollutant. Applied Catalysis B: Environmental, 2019, 246:1-11.
DOI URL |
[15] |
LI C, HU R, LU X, et al. Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet. Catalysis Today, 2020, 350:171-183.
DOI URL |
[16] | LI W, JIN Z G, LIU Z F, et al. Preparation of polystyrene spheres (PS) templates and ordered porous ZnO films by dip-coating. Journal of Inorganic Materials, 2006, 21(2):473-480. |
[17] | 李丝丝, 张红静, 周明, 等. 聚苯乙烯微球的功能化及其应用进展. 现代化工, 2017, 37(5):38-41. |
[18] | LI W, ZUO Y, JIANG L, et al. Bi2Ti2O7/TiO2/RGO composite for the simulated sunlight-driven photocatalytic degradation of ciprofloxacin. Materials Chemistry and Physics, 2020, 256:123650. |
[19] |
WILLIAMS G, SEGER B, KAMAT P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7):1487-1491.
DOI URL |
[20] | 吴强红. rGO-TiO2薄膜的制备及光催化性研究. 兰州: 兰州理工大学硕士学位论文, 2016. |
[21] |
LI C X, JIN H Z, YANG Z Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. Journal of Inorganic Materials, 2017, 32(04):357-364.
DOI URL |
[22] |
THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9/10):1051-1069.
DOI URL |
[23] |
QIAN S, PU S, ZHANG Y, et al. New insights on the enhanced non-hydroxyl radical contribution under copper promoted TiO2/GO for the photodegradation of tetracycline hydrochloride. Journal of Environmental Sciences, 2021, 100:99-109.
DOI URL |
[24] | ANITHA B, KHADAR M A. Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals: role of defect states. Solid State Sciences, 2020, 108:106392. |
[25] |
WANG P, ZHAN S, XIA Y, et al. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Applied Catalysis B: Environmental, 2017, 207:335-346.
DOI URL |
[26] |
ZHANG Y, CHEN J, HUA L, et al. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of Rhodamine B. Journal of Hazardous Materials, 2017, 340:309-318.
DOI URL |
[27] |
LI F B, LI X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis A: General, 2002, 228(1/2):15-27.
DOI URL |
[28] |
LI C X, HU R B, LU X F, et al. Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet. Catalysis Today, 2020, 350(15):171-183.
DOI URL |
[29] | NASSEH N, BARIKBIN B, TAGHAVI L. Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: efficiency, stability, kinetic and pathway study. Environmental Technology & Innovation, 2020, 20:10135. |
[30] |
ZHU Q, SUN Y, NA F, et al. Fabrication of CdS/titanium-oxo- cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light. Applied Catalysis B: Environmental, 2019, 254:541-550.
DOI URL |
[31] | HORNOS F, ESQUEMBRE R, GOMEZ J. Competitive inhibition of protein adsorption to silica surfaces by their coating with high density charge polyelectrolytes. Colloids Surf. B: Biointerfaces, 2020, 191:110993. |
[32] |
WU X, FU M, LU P, et al. Unique electronic structure of Mg/O co-decorated amorphous carbon nitride enhances the photocatalytic tetracycline hydrochloride degradation. Chinese Journal of Catalysis, 2019, 40(5):776-785.
DOI URL |
[33] |
XU H Q, JIANG Y H, YANG X Y, et al. Fabricating carbon quantum dots doped ZnIn2S4 nanoflower composites with broad spectrum and enhanced photocatalytic tetracycline hydrochloride degradation. Materials Research Bulletin, 2018, 97:158-168.
DOI URL |
[1] | 胡盈, 李自清, 方晓生. 溶液法制备AgBi2I7薄膜及其光电探测性能研究[J]. 无机材料学报, 2023, 38(9): 1055-1061. |
[2] | 邹凯, 张文斌, 关胜, 孙海轶, 彭凯伦, 邹家杰, 李学红, 王成, 冷雨欣, 梁瑞虹, 周志勇. 压电式高温液滴喷射元件研制[J]. 无机材料学报, 2023, 38(8): 987-988. |
[3] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[4] | 蔡苗, 陈子航, 曾实, 杜江慧, 熊娟. CuS纳米片修饰Bi5O7I复合材料用于光催化还原Cr(VI)水溶液[J]. 无机材料学报, 2021, 36(6): 665-672. |
[5] | 董正明, 李修, 陈晨, 曹明贺, 易志国. NBT-BNT陶瓷的光致形变性能[J]. 无机材料学报, 2021, 36(3): 277-282. |
[6] | 张塞, 邹英桐, 陈中山, 李冰峰, 顾鹏程, 文涛. 可见光驱动RGO/g-C3N4活化过硫酸盐降解水中双酚A[J]. 无机材料学报, 2020, 35(3): 329-336. |
[7] | 魏鑫, 卢占会, 王路平, 方明. 可见光下Bi2WO6纳米片高效光降解四环素的机理研究[J]. 无机材料学报, 2020, 35(3): 324-328. |
[8] | 李志锋, 谭杰, 杨晓飞, 蔺祖弘, 郇正来, 张婷婷. 高暴露(001)面BiOBr/Ti3C2复合光催化剂的制备及其可见光催化性能[J]. 无机材料学报, 2020, 35(11): 1247-1254. |
[9] | 魏居孟, 吕强, 王奔驰, 潘家乐, 叶祥桔, 宋常春. 高可见光催化活性立方体浮雕状Ag3PO4的合成[J]. 无机材料学报, 2019, 34(7): 786-790. |
[10] | 李纳, 刘斌, 施佼佼, 薛艳艳, 赵衡煜, 施张丽, 侯文涛, 徐晓东, 徐军. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573-589. |
[11] | 李晓萍, 李跃军, 曹铁平, 孙大伟, 王霞, 席啸天. 简易合成Bi/Bi2MoO6/TiO2复合纳米纤维及其增强的可见光催化性能[J]. 无机材料学报, 2019, 34(11): 1193-1199. |
[12] | 柯银环, 曾敏, 姜宏, 熊春荣. N掺杂TiO2纳米纤维高可见光催化CO2合成甲醇[J]. 无机材料学报, 2018, 33(8): 839-844. |
[13] | 李健, 张刚华, 范立坤, 黄国全, 高志鹏, 曾涛. 不同pH下KBiFe2O5可见光催化性能研究[J]. 无机材料学报, 2018, 33(7): 805-810. |
[14] | 童 琴, 董亚梅, 严 良, 何丹农. 以海藻酸钠为基体的Ag/AgBr/TiO2整体式光催化剂的高效制备及其光催化性能[J]. 无机材料学报, 2017, 32(6): 637-642. |
[15] | 李翠霞, 金海泽, 杨志忠, 杨 轩, 董其铮, 厉婷婷. 介孔RGO/TiO2复合光催化材料的制备及光催化性能[J]. 无机材料学报, 2017, 32(4): 357-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||