[1] |
CHEN C C, MA W H, ZHAO J C . Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev., 2010,39(11):4206-4219.
|
[2] |
LANG X J, CHEN X D, ZHAO J . Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 2014,43(1):473-486.
|
[3] |
CAO T P, LI Y J, SHAO C L , et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011,27(6):2946-2952.
|
[4] |
TONG H, OUYANG S X, BI Y P , et al. Nano-photocatalytic materials: possibilities and challenges. Adv. Mater., 2012,24(2):229-251.
|
[5] |
LI J, YU Y, ZHANG L Z . Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 2014,6(15):8473-8488.
|
[6] |
TIAN J, HAO P, WEI N , et al. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catal., 2015,5(8):4530-4536.
|
[7] |
LI X X, FANG S M, GE L , et al. Synthesis of flower-like Ag/AgCl-Bi2MoO6 plasmonic photocatalysts with enhanced visible-light photocatalytic performance. Appl. Catal. B: Environ.. Appl. Catal. B: Environ., 2015,176- 177:62-69.
|
[8] |
WU M H, WANG Y X, XU Y , et al. Self-supported Bi2MoO6 nanowall for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 2017,9(28):23647-23653.
|
[9] |
SUN Y Y, WANG W Z, SUN S M , et al. A general synthesis strategy for one-dimensional Bi2MO6(M = Mo, W) photocatalysts using an electrospinning method. CrystEngComm, 2013,15(39):7959-7964.
|
[10] |
DAI W L, YU J J, XU H , et al. Synthesis of hierarchical flower-like Bi2MoO6 microspheres as efficient photocatalyst for photoreduction of CO2 into solar fuels under visible light. CrystEngComm, 2016,18(19):3472-3480.
|
[11] |
ZHAO J, LU Q F, WANG C Q , et al. One-dimensional Bi2MoO6 nanotubes: controllable synthesis by electrospinning and enhanced simulated sunlight photocatalytic degradation performances. J. Nanopart. Res., 2015,17:189-199.
|
[12] |
YU C L, WU Z, LIU R Y , et al. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl. Catal. B: Environ., 2017,209:1-11.
|
[13] |
AWAZU K, FUJIMAKI M, ROCKSTUHL C , et al. A plasmonic photocatalyst ponsisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc., 2008,130(5):1676-1680.
|
[14] |
MORI K, VERMA P, HAYASHI R , et al. Color-controlled Ag nanoparticles and nanorods within confined mesopores: microwave-assisted rapid synthesis and application in plasmonic catalysis under visible-light irradiation. Chem-A. Eur. J., 2015,21(33):11885-11893.
|
[15] |
YANG J, WANG X H, CHEN Y M , et al. Enhanced photocatalytic activities of visible-light driven green synthesis in water and environmental remediation on Au/Bi2WO6 hybrid nanostructures. RSC Adv, 2015,5(13):9771-9782.
|
[16] |
WU Q S, CUI Y, YANG L M , et al. Facile in-situ photocatalysis of Ag/Bi2WO6 heterostructure with obviously enhanced performance. Sep. Purif. Technol., 2015,142:168-175.
|
[17] |
YU C L, BAI Y, CHEN J C , et al. Pt/Bi2WO6 composite microflowers: high visible light photocatalytic performance and easy recycle. Sep. Purif. Technol., 2015,154:115-122.
|
[18] |
QIN F, WANG R M, LI G F , et al. Highly efficient photocatalytic reduction of Cr(VI) by bismuth hollow nanospheres. Catalysis Communications, 2013,42:14-19.
|
[19] |
WANG Y W, KIM J S, KIM G H , et al. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl. Phys. Lett., 2006,88(14):143106-143109.
|
[20] |
LIU X W, CAO H Q, YIN JIE F , et al. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res., 2011,4(5):470-482.
|
[21] |
WENG S X, CHEN B B, XIE L Y , et al. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem. A, 2013,1(9):3068-3075.
|
[22] |
GNAYEM H, SASSON Y . Nanostructured 3D sunflower-like bismuth doped BiOCl xBr1-x solid dolutions with enhanced visible light photocatalytic activity as a remarkably efficient technology for water purification. J. Phys. Chem. C, 2015,119(33):19201-19209.
|
[23] |
YANG J, WANG X H, ZHAO X L , et al. Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity. J. Phys. Chem. C, 2015,119:3068-3078.
|
[24] |
LÜ W Z, HUANG D Z, CHEN Y M , et al. Synthesis and characterization of Mo-W co-doped VO2(R) nano-powders by the microwave-assisted hydrothermal method. Ceram. Int., 2014,40(8):12661-12668.
|
[25] |
REN W J, AI Z H, JIA F L , et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B-Environ., 2007,69(34):138-144.
|
[26] |
ZHOU Y G, ZHANG Y F, LIN M S , et al. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun., 2015,6:8340-8347.
|
[27] |
ZHAO Z W, ZHANG W D, DONG F , et al. Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis. J. Phys. Chem. C, 2016,120(22):11889-11898.
|
[28] |
LU S Y, YU Y N, BAO S J , et al. In situ synthesis and excellent photocatalytic activity of tiny Bi decorated bismuth tungstate nanorods. RSC Advances, 2015,5:85500-85505.
|
[29] |
DONG F, LI Q Y, SUN Y J , et al. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal., 2014,4(12):4341-4350
|
[30] |
WANG Z, JIANG C L, HUANG R , et al. Investigation of optica and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J. Phys. Chem. C, 2014,118(2):1155-1160.
|
[31] |
YU Y, CAO C Y, LIU H , et al. A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity. J. Mater. Chem. A , 2014,2(6):1677-1681.
|
[32] |
FENG H B, LI Y P, QIAN D , et al. Novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure: preparation and photocatalytic characteristics. Chinese Journal of Catalysis, 2016,37(6):855-862.
|
[33] |
FURUBE A, DU L C, HARA K , et al. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 2007,129(48):14852-14853.
|