无机材料学报 ›› 2020, Vol. 35 ›› Issue (6): 647-653.DOI: 10.15541/jim20190307 CSTR: 32189.14.10.15541/jim20190307
郑云1,2,陈亦琳1,高碧芬1,林碧洲1
收稿日期:
2019-06-24
修回日期:
2019-08-23
出版日期:
2020-06-20
网络出版日期:
2019-09-18
作者简介:
郑 云(1990-), 女, 博士, 讲师. E-mail: zheng-yun@hqu.edu.cn;基金资助:
ZHENG Yun1,2,CHEN Yilin1,GAO Bifen1,LIN Bizhou1
Received:
2019-06-24
Revised:
2019-08-23
Published:
2020-06-20
Online:
2019-09-18
Supported by:
摘要:
半导体光催化分解水被认为是解决全球能源短缺和环境污染问题的潜在途径之一。近年来, 磷烯(BP)由于具有带隙可调、空穴迁移率高、吸收光谱宽等特性而在光催化分解水方面得到了广泛关注。本文综述了国内外近年来在磷烯光催化分解水领域所取得的重要研究进展, 总结了磷烯基光催化剂的合成方法、表面修饰和异质结构构建等改性策略, 阐述了磷烯基光催化剂的构-效关系和电荷转移机制, 并展望了磷烯基光催化剂所面临的机遇和挑战, 揭示了磷烯基材料在太阳能利用和转化方面的重要应用潜力。
中图分类号:
郑云,陈亦琳,高碧芬,林碧洲. 磷烯光催化分解水研究进展[J]. 无机材料学报, 2020, 35(6): 647-653.
ZHENG Yun,CHEN Yilin,GAO Bifen,LIN Bizhou. Progress on Phosphorene for Photocatalytic Water Splitting[J]. Journal of Inorganic Materials, 2020, 35(6): 647-653.
图1 磷烯的合成、表面修饰、异质结构设计及光催化分解水应用
Fig. 1 Synthesis, surface modification and heterostructure design of phosphorene-based photocatalysts for half-reactions and overall reactions of water splitting
图2 在pH=8.0的一般条件下沿a轴7%拉伸应变, 沿b轴5%拉伸应变时磷烯的能带图[13]
Fig. 2 Band edge alignments of phosphorene at ambient condition, under 7% tensile strain along a axis and 5% tensile strain along b axis when pH=8.0[13]
图5 BP/CN催化剂在可见光和近红外光驱动下光催化分解水的机理示意图[29]
Fig. 5 Schematic diagram for the visible and NIR light driven photocatalytic H2 evolution reaction over BP/CN catalyst[29]
图7 BP-Au/LTO在(a)可见光和(b)近红外光照射下光催化制取氢气的原理图[39]
Fig. 7 Schematic diagrams of photocatalytic H2 production using BP-Au/LTO under (a)visible and (b)NIR light irradiation[39]
图8 可见光照射下BP/BiVO4的Z型光催化裂解水系统原理图[45]
Fig. 8 Schematic diagram of Z-scheme photocatalytic water splitting system using BP/BiVO4 under visible light irradiation[45]
图9 (a)BP/CN异质结构光催化剂在可见光照射下产生超氧自由基(·O2-)的电子自旋共振谱图, (b)在可见光照射下降解四唑氮蓝溶液以测定BP/CN复合材料产生·O2-的性能曲线[46]
Fig. 9 (a) Electron spin resonance spectra of ·O2- radicals over BP/CN hybrid with visible-light irradiation, and (b) time-dependent degradation of nitroblue tetrazolium solution to detect ·O2- evolution over BP/CN hybrid under visible-light irradiation[46]
[1] |
FUJISHIMA A, HONDA K . Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972,238(5358):37-38.
DOI URL |
[2] |
ZHENG D, ZHANG G, WANG X . Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl. Catal. B-Environ, 2015,179:479-488.
DOI URL |
[3] |
LU Q, HUA L, CHEN Y , et al. Preparation and property of oxygen- deficient Bi2WO6-x photocatalyst active in visible light. J. Inorg. Mater., 2015,30(4):413-419.
DOI URL |
[4] |
WAN J, HU D, LU P , et al. Preparation of anatase TiO2 nanocube with exposed (001) facet and its photocatalytic properties. J. Inorg. Mater., 2016,31(8):845-849.
DOI URL |
[5] |
YI Z, YE J, KIKUGAWA N , et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater., 2010,9:559.
DOI URL |
[6] |
WANG X, MAEDA K, THOMAS A , et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2008,8:76.
DOI URL |
[7] |
BAI Y, WILBRAHAM L, SLATER B J , et al. Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory. J. Am. Chem. Soc., 2019,141(22):9063-9071.
DOI URL |
[8] |
ZHAO C, CHEN Z, XU J , et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B-Environ, 2019,256:117867.
DOI URL |
[9] |
YANG X, TIAN L, ZHAO X , et al. Interfacial optimization of g- C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl. Catal. B-Environ, 2019,244:240-249.
DOI URL |
[10] |
LI J, LI H, ZHAN G , et al. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res., 2017,50(1):112-121.
DOI URL |
[11] |
LI B, LAI C, ZENG G , et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications. Small, 2019,15(8):1804565.
DOI URL |
[12] |
YAN J, VERMA P, KUWAHARA Y , et al. Recent progress on black phosphorus-based materials for photocatalytic water splitting. Small Methods, 2018,2(12):1800212.
DOI URL |
[13] |
SA B, LI Y L, QI J , et al. Strain engineering for phosphorene: the potential application as a photocatalyst. J. Phys. Chem. C, 2014,118(46):26560-26568.
DOI URL |
[14] |
RAHMAN MZ, BATMUNKH M, BAT-ERDENE M , et al. p-type BP nanosheet photocatalyst with AQE of 3.9% in the absence of a noble metal cocatalyst: investigation and elucidation of photophysical properties. J. Mater. Chem. A, 2018,6(38):18403-18408.
DOI URL |
[15] |
ZHU X, ZHANG T, SUN Z , et al. Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater., 2017,29(17):1605776.
DOI URL |
[16] |
TIAN B, TIAN B, SMITH B , et al. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci., 2018,115(17):4345-4350.
DOI URL |
[17] |
ZHAO G, WANG T, SHAO Y , et al. A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications. Small, 2017,13(7):1602243.
DOI URL |
[18] |
ZHU M, ZHAI C, FUJITSUKA M , et al. Noble metal-free near- infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black phosphorus/WS2. Appl. Catal. B-Environ, 2018,221:645-651.
DOI URL |
[19] |
YUAN Y J, WANG P, LI Z , et al. The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst. Appl. Catal. B-Environ, 2019,242:1-8.
DOI URL |
[20] |
TIAN B, TIAN B, SMITH B , et al. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat. Commun., 2018,9:1397.
DOI URL |
[21] |
LIANG Q, SHI F, XIAO X , et al. In situ growth of CoP nanoparticles anchored on black phosphorus nanosheets for enhanced photocatalytic hydrogen production. ChemCatChem, 2018,10(10):2179-2183.
DOI URL |
[22] |
VISHNOI P, GUPTA U, PANDEY R , et al. Stable functionalized phosphorenes with photocatalytic HER activity. J. Mater. Chem. A, 2019,7(12):6631-6637.
DOI URL |
[23] |
WU J, HUANG S, JIN Z , et al. Black phosphorus: an efficient co- catalyst for charge separation and enhanced photocatalytic hydrogen evolution. J. Mater. Sci., 2018,53(24):16557-16566.
DOI URL |
[24] |
ELBANNA O, ZHU M, FUJITSUKA M , et al. Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catal., 2019,9(4):3618-3626.
DOI URL |
[25] |
ZHAO H, LIU H, SUN R , et al. A Zn0.5Cd0.5S photocatalyst modified by 2D black phosphorus for efficient hydrogen evolution from water. ChemCatChem, 2018,10(19):4395-4405.
DOI URL |
[26] |
ZHENG Y, LIN L, YE X , et al. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem. Int. Ed., 2014,53(44):11926-11930.
DOI URL |
[27] |
ZHENG Y, LIN L, WANG B , et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed., 2015,54(44):12868-12884.
DOI URL |
[28] |
ZHENG Y, YU Z, LIN F , et al. Sulfur-doped carbon nitride polymers for photocatalytic degradation of organic pollutant and reduction of Cr(VI). Molecules, 2017,22(4):572.
DOI URL |
[29] |
ZHU M, KIM S, MAO L , et al. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc., 2017,139(37):13234-13242.
DOI URL |
[30] |
WEN M, WANG J, TONG R , et al. A low-cost metal-free photocatalyst based on black phosphorus. Adv. Sci., 2019,6(1):1801321.
DOI URL |
[31] |
RAN J R, GUO W W, WANG H L , et al. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater., 2018,30(25):1800128.
DOI URL |
[32] |
DU H, LIU Y, SHEN C , et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chin. J. Catal., 2017,38(8):1295-1306.
DOI URL |
[33] |
LEI W, MI Y, FENG R , et al. Hybrid 0D-2D black phosphorus quantum dots-graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018,50:552-561.
DOI URL |
[34] |
RAN J, ZHU B, QIAO S Z . Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew. Chem. Int. Ed., 2017,56(35):10373-10377.
DOI URL |
[35] |
HU J, CHEN D , MO Z et al. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew. Chem. Int. Ed., 2019,58(7):2073-2077.
DOI URL |
[36] |
ZHANG Y, WANG L, PARK S H , et al. Single near-infrared-laser driven Z-scheme photocatalytic H2 evolution on upconversion material@Ag3PO4@black phosphorus. Chem. Eng. J., 2019,375:121967.
DOI URL |
[37] |
ZHU M, OSAKADA Y, KIM S , et al. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B-Environ, 2017,217:285-292.
DOI URL |
[38] |
ZHU M, FUJITSUKA M, ZENG L , et al. Dual function of graphene oxide for assisted exfoliation of black phosphorus and electron shuttle in promoting visible and near-infrared photocatalytic H2 evolution. Appl. Catal. B-Environ, 2019,256:117864.
DOI URL |
[39] |
ZHU M, CAI X, FUJITSUKA M , et al. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew. Chem. Int. Ed., 2017,56(8):2064-2068.
DOI URL |
[40] |
RAN J, WANG X, ZHU B , et al. Strongly interactive 0D/2D heterostructure of a ZnxCd1-xS nanoparticle decorated phosphorene nanosheet for enhanced visible-light photocatalytic H2 production. Chem. Commun., 2017,53(71):9882-9885.
DOI URL |
[41] |
REDDY DA, KIM E H, GOPANNAGARI M , et al. Few layered black phosphorus/MoS2 nanohybrid: a promising co-catalyst for solar driven hydrogen evolution. Appl. Catal. B-Environ, 2019,241:491-498.
DOI URL |
[42] |
BOPPELLA R, YANG W, TAN J , et al. Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Appl. Catal. B-Environ, 2019,242:422-430.
DOI URL |
[43] |
HU J, JI Y, MO Z , et al. Engineering black phosphorus to porous g-C3N4-metal-organic framework membrane: a platform for highly boosting photocatalytic performance. J. Mater. Chem. A, 2019,7(9):4408-4414.
DOI URL |
[44] |
YAN J, JI Y, KONG L , et al. Black phosphorus-based compound with few layers for photocatalytic water oxidation. ChemCatChem, 2018,10(16):3424-3428.
DOI URL |
[45] |
ZHU M, SUN Z, FUJITSUKA M , et al. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem. Int. Ed., 2018,57(8):2160-2164.
DOI URL |
[46] |
ZHENG Y, YU Z, OU H , et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater., 2018,28(10):1705407.
DOI URL |
[47] |
RUDENKO A N, KATSNELSON M I . Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B, 2014,89(20):201408.
DOI URL |
[48] |
TRAN V, SOKLASKI R, LIANG Y , et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 2014,89(23):235319.
DOI URL |
[49] |
ZHOU Q, CHEN Q, TONG Y , et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed., 2016,55(38):11437-11441.
DOI URL |
[50] |
QIU M, WANG D, LIANG W , et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci., 2018,115(3):501-506.
DOI URL |
[51] |
PENG X, WEI Q, COPPLE A . Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B, 2014,90(8):085402.
DOI URL |
[52] |
TANG X, LIANG W, ZHAO J , et al. Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small, 2017,13(47):1702739.
DOI URL |
[53] |
MAO L, CAI X, YANG S , et al. Black phosphorus-CdS-La2Ti2O7 ternary composite: effective noble metal-free photocatalyst for full solar spectrum activated H2 production. Appl. Catal. B-Environ, 2019,242:441-448.
DOI URL |
[54] |
FENG R, LEI W, LIU G , et al. Visible- and NIR-light responsive black-phosphorus-based nanostructures in solar fuel production and environmental remediation. Adv. Mater., 2018,30(49):1804770.
DOI URL |
[55] |
ZHANG K, JIN B, PARK C , et al. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun., 2019,10(1):2001.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[10] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[11] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[12] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[13] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[14] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[15] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||