[1] |
许炜, 陶占良, 陈军 . 储氢研究进展. 化学进展, 2006,18(2):200-210.
|
[2] |
SPACIL H S, TEDMON C S . Electrochemical dissociation of water vapor in solid oxide electrolyte cells. Journal of the Electrochemical Society, 1969,116(12):1618.
DOI
URL
|
[3] |
丁福臣, 易玉峰 . 制氢储氢技术. 化学工业出版社, 2006.
|
[4] |
SINGH R N, SINGH A, ANINDITA . Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH. International Journal of Hydrogen Energy, 2009,34(4):2052-2057.
DOI
URL
|
[5] |
LU B, CAO D, WANG P , et al. Oxygen evolution reaction on Ni-substituted CoO nanowire array electrodes. International Journal of Hydrogen Energy, 2011,36(1):72-78.
|
[6] |
BENNETT L H, CUTHILL J R, MCALISTER A J , et al. Electronic structure and catalytic behavior of tungsten carbide. Science, 1974,184(4136):563.
|
[7] |
CHEN Z, HIGGGINS D, YU A , et al. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environmental Science, 2011,4:3167-3192.
|
[8] |
MORALESGUIO C G, STERN L A, HU X . Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014,43(18):6555-6569.
DOI
URL
|
[9] |
CHU ZENG-YONG, YUAN BO, YAN TING-NAN . Recent progress in photocatalysis of g-C3N4. Journal of Inorganic Materials, 2014,29(8):785-794.
DOI
URL
|
[10] |
WANG X, MAEDA K, CHEN X , et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society, 2009,131(5):1680-1681.
|
[11] |
CHEN X, JUN Y S, TAKANABE K , et al. Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chemistry of Materials, 2009,21:4093.
|
[12] |
ZHANG J, GRZELCZAK M, HOU Y , et al. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements.Chemical Science, 2012,3(2):443-446.
|
[13] |
WANG X, CHEN X, THOMAS A , et al. Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Advanced Materials, 2010,21(16):1609-1612.
|
[14] |
CHEN X, ZHANG J, FU X , et al. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. Journal of the American Chemical Society, 2009,131(33):11658-11659.
|
[15] |
LIU G, NIU P, SUN C , et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. Journal of the American Chemical Society, 2010,132(33):11642-11648.
|
[16] |
SHI QI, LEI YONG-PENG, WANG YING-DE , et al. In-situ preparation and electrocatalytic oxygen reduction performance of N-doped graphene@CNF. Journal of Inorganic Materials, 2016,31(4):351-357.
|
[17] |
王悦, 蒋权, 尚介坤 , 等. 介孔氮化碳材料合成的研究进展. 物理化学学报, 2016,32(8):1913-1928.
|
[18] |
王芳, 刘俊华, 殷元骐 , 等. 凹凸棒凸负载铂催化剂上对氯硝基苯的高活性高选择性液相加氢反应. 物理化学学报, 2009,25(8):1678-1682.
DOI
|
[19] |
高旭升, 刘光, 史沁芳 , 等. 钴铁双金属氧化物多孔纳米棒的制备及其电解水析氧性能. 无机化学学报, 2017,33(4):623-629.
|
[20] |
LIU L, QI Y H, HU J S , et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra. Applied Surface Science, 2015,351:1146-1154.
|
[21] |
WANG X C, MAEDA K, THOMAS A , et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009,8(1):76-80.
|
[22] |
CAO K T, JIANG Z Y, ZHANG X S , et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015,490(15):72-83.
|
[23] |
ZHOU S Y, XUE A L, ZHANG Y , et al. Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes. Applied Clay Science, 2015,107(6):220-229.
|
[24] |
ZHAO H X, CHEN S, QUAN X , et al. ntegration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/ reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B Environmental, 2016,194(5):134-140.
|
[25] |
YU H W, YANG S S, RUAN H M , et al. Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Applied Clay Science, 2015,111(s4-6):67-75.
|