无机材料学报 ›› 2019, Vol. 34 ›› Issue (7): 685-693.DOI: 10.15541/jim20180515 CSTR: 32189.14.10.15541/jim20180515
所属专题: 药物载体与防护材料
• 综述 • 下一篇
李昊耕1,2,谷红宇1,章俞之1,2(),宋力昕1,2(
),吴岭南1,齐振一1,张涛1
收稿日期:
2018-10-29
修回日期:
2018-11-29
出版日期:
2019-07-20
网络出版日期:
2019-06-26
作者简介:
李昊耕(1994-), 男, 博士研究生. E-mail:lihaogeng@student.sic.ac.cn
基金资助:
LI Hao-Geng1,2,GU Hong-Yu1,ZHANG Yu-Zhi1,2(),SONG Li-Xin1,2(
),WU Ling-Nan1,QI Zhen-Yi1,ZHANG Tao1
Received:
2018-10-29
Revised:
2018-11-29
Published:
2019-07-20
Online:
2019-06-26
Supported by:
摘要:
聚合物材料具有质量轻、强度高等优点, 常被用作航天器表面的复合结构基材。原子氧是低地球轨道空间中成分含量最高的粒子之一, 对暴露在航天器表面的聚合物材料易形成大通量、高能量轰击, 造成其表面氧化侵蚀和质量损失, 使聚合物材料的性能发生不同程度的衰退, 也是导致航天器件可靠性降低、工作寿命缩短的主要环境因素。本文对当前国内外通用的几种聚合物材料表面原子氧防护技术进行了整理归纳, 其中表面化学改性方法结合了体材改性和常用防护涂层的优点, 得到的有机/无机复合改性防护层具有较好的综合防护性能。文中分析了近年来由计算模拟法开展原子氧与表面防护材料相关作用机理的研究, 指出采用计算模拟结合试验的研究方法, 有可能从本质上揭示复合改性层与原子氧的作用机理, 从而促进原子氧防护材料与防护技术的研究发展。
中图分类号:
李昊耕,谷红宇,章俞之,宋力昕,吴岭南,齐振一,张涛. 聚合物材料表面原子氧防护技术的研究进展[J]. 无机材料学报, 2019, 34(7): 685-693.
LI Hao-Geng,GU Hong-Yu,ZHANG Yu-Zhi,SONG Li-Xin,WU Ling-Nan,QI Zhen-Yi,ZHANG Tao. Surface Protection of Polymer Materials from Atomic Oxygen: a Review[J]. Journal of Inorganic Materials, 2019, 34(7): 685-693.
图2 PI表面改性生成聚酰胺酸示意图[50]
Fig. 2 PI surface modification to form polyamic acid: NaOH hydrolysis of PI (Step 1) to form sodium salt of polyamic acid followed by acidification (Step 2) to form polyamic acid[50]
图3 AO轰击(有效积累通量约为2.0×1020 atoms/cm2)下的样品SEM照片[52,53], 未经处理的(a)被遮挡区域及(b)暴露区域; PhotosilTM处理后的(c)被遮挡区域及(d)暴露区域, 和暴露的(e) Implantox处理后的区域以及(f)无防护处理区域
Fig. 3 SEM images of AO exposed (effective fluence ~2.0×1020atoms/cm2) samples: untreated samples[52,53] (a) masked section and (b) exposed section, images of ImplantoxTM treatment being (c) masked and (d) exposed sections, and AO exposed (e) Implantox-treated section and (f) untreated sections
图4 暴露在原子氧辐照后的样品表面形貌[56]: (a)无防护处理的原始PI和(b)镀覆SiO2防护层的PI
Fig. 4 SEM images of AO exposed (effective fluence~ 2.0×1020 atoms/cm2) sample surfaces morphology[56]: untreated original PI and (b) SiO2 coated PI
Sample | F/(×1020 O atom?cm-2) | ΔM/mg | A/cm2 | (ΔM/A)/(mg?cm-2) | E/(×10-24, cm3atom-1) |
---|---|---|---|---|---|
Kapton | 3.09 | 5.03 | 3.14 | 1.60 | 3.65 |
SiOx coated PI | 3.09 | 0.17 | 3.14 | 0.05 | 0.12 |
表1 AO对PI样品的侵蚀量[56]
Table 1 Erosion yield of atomic oxygen on PI samples[56]
Sample | F/(×1020 O atom?cm-2) | ΔM/mg | A/cm2 | (ΔM/A)/(mg?cm-2) | E/(×10-24, cm3atom-1) |
---|---|---|---|---|---|
Kapton | 3.09 | 5.03 | 3.14 | 1.60 | 3.65 |
SiOx coated PI | 3.09 | 0.17 | 3.14 | 0.05 | 0.12 |
图5 不同PI防护体系遭受AO轰击前(左侧, t=0)和轰击后(右侧, t=35 ps)的计算模拟图像[71]: PI枝接(a)15wt% POSS 和(b) 30wt% POSS; 15wt%石墨稀采用(c)随机取向和(d)定向排列
Fig. 5 Initial (left, t=0) and final (right, t=35 ps) simulation snapshots of different PI protection system under AO impact[71]:PI-grafted (a) 15wt% POSS and (b) 30wt% POSS; 15wt% graphene (c) randomly oriented and (d) aligned
图6 氧原子通过匹配的双空位缺陷渗透进入双层石墨烯隔层的DFT势垒计算[74]
Fig. 6 Potential barrier of an O atom permeating into interlayer of double-layer graphene with matched divacancy defect[74]
[1] |
DEVER J A, MILLER S K, SECHKAR E A , et al. Space environment exposure of polymer films on the materials international space station experiment: results from MISSE 1 and MISSE 2. High Perform. Polym., 2008,20(4/5):371-387.
DOI URL |
[2] | ZHANG W, YI M, SHEN Z G , et al. Protection against atomic oxygen erosion of oxide coatings for spacecraft materials. Journal of Beijing University of Aeronautics and Astronautics, 2013,39(8):1074-1078. |
[3] | LEI X F . Functional Polyimide/silicon Films: Fabrication and Properties. Xi’an: Northwestern Polytechnical University PhD thesis, 2016. |
[4] |
LIAW D J, WANG K L, HUANG Y C , et al. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci., 2012,37(7):907-974.
DOI URL |
[5] | XIONG Y Q, XIE S P . Measurement methods of atomic oxygen concentration. Journal of Transducer Technology, 1999,18(3):8-12. |
[6] |
SEMONIN D M, BRUNSVOLD A L, MINTON T K . Erosion of Kapton H® by hyperthermal atomic oxygen. J. Spacer. Rockets, 2006,43(2):421-425.
DOI URL |
[7] | SONG M M . Study on Erosion Effect of Atomic Oygen on Polyimide and Its Protective Technology in LEO Environment. Nanchang: Jiangxi Science and Technology Normal University Master Thesis, 2012. |
[8] | WANG C B . Study on the Degradation Behavior of Organic/Inorganic Protective Materials in Atomic Oxygen Environment. Changchun: Jilin University Master Thesis, 2017. |
[9] | SILVERMAN E M . NASA Contrator Report 4661, Part 1. Space Environmental Effects on Spacecraft: LEO Materials Selection Guide, part 1, N96-10860, Virginia: NASA, 1995. |
[10] |
TIAN C, CHENG L F, LUAN X G . Degradation behaviour of C/C composites by atomic oxygen irradiation. Journal of Inorganic Materials, 2013,28(8):853-858.
DOI URL |
[11] |
HOOSHANGI Z, FEGHHI S A H, SAEEDZADEH R . The effects of low earth orbit atomic oxygen on the properties of polytetraflu- oroethylene. Acta Astronaut., 2016,119:233-240.
DOI URL |
[12] |
DE GROH K K, BANKS B A . Atomic-oxygen undercutting of long duration exposure facility atomized-Kapton multilayer insulation. J. Spacer. Rockets, 1994,31(4):656-664.
DOI URL |
[13] |
SHIMAMURA H, NAKAMURA T . Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym. Degrad. Stabil., 2009,94(9):1389-1396.
DOI URL |
[14] | DE GROH K K, BANKS B A, MITCHELL G G , et al. NASA STI Pprogram. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data, NASA/TM—2013-217847,Ohio: NASA, 2013. |
[15] | BANKS B A, DILL G C, LOFTUS R J , et al. NASA STI Program. Comparison of Hyperthermal Ground Laboratory Atomic Oxygen Erosion Yields with Those in Low Earth Orbit, NASA/TM—2013-216613,Ohio: NASA, 2013. |
[16] | BANKS B A, MILLER S K . NASA STI Program. Effects of Sample Holder Rdge Geometry on Atomic Oxygen Erosion Yield of Pyrolytic Graphite Exposed in Low Earth Orbit, NASA/TM—2018-219910,Ohio: NASA, 2018. |
[17] | QING F L, CAO W Z . Mechanical Property Improvement of Novel AO Resistance PI Thin Films and the synthesis of Wide Width Films. China Space Science Society Space Materials Specialized Committee 2009 Academic Exchange Proceedings, 2009. |
[18] | JI H W . Synthesis and Atomic Oxygen Erosion Resistance Property of PPO-containing Polyimide Films. Changchun: Jilin University Master Thesis, 2014. |
[19] | WEI J H, GANG Z X, MING L Q , et al. Atomic oxygen resistant phosphorus-containing copolyimides derived from bis [4-(3-aminophenoxy) phenyl] phenylphosphine oxide. Sci. SerB., 2014,56(6):788-798. |
[20] |
XIAO F, WANG K, ZHAN M . Atomic oxygen erosion resistance of polyimide/ZrO2 hybrid films. Appl. Surf. Sci., 2010,256(24):7384-7388.
DOI URL |
[21] |
LÜ M, WANG Q, WANG T , et al. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications. Compos. Pt. B-Eng., 2015,77:215-222.
DOI URL |
[22] |
LI G, WANG L, NI H , et al. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym., 2001,11(3):123-154.
DOI URL |
[23] | MINTON T K, WRIGHT M E, TOMCZAK S J , et al. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl. Mater. Interfaces, 2012,4(2):492-502. |
[24] |
LEI X F, QIAO M T, TIAN L D , et al. Improved space survivability of polyhedral oligomeric silsesquioxane (POSS) polyimides fabricated via novel POSS-diamine. Corros. Sci., 2015,90:223-238.
DOI URL |
[25] |
LI X, AL-OSTAZ A, JARADAT M , et al. Substantially enhanced durability of polyhedral oligomeric silsequioxane-polyimide nanocomposites against atomic oxygen erosion. Eur. Polym. J., 2017,92:233-249.
DOI URL |
[26] | TOMCZAK S J, MARCHANT D, SVEIDA S , et al. Properties and improved space survivability of POSS (polyhedral oligomeric silsesquioxane) polyimides. MRS Online Proc. Libr., 2004,851. |
[27] |
BRUNSVOLD A L, MINTON T K, GOUZMAN I , et al. An investigation of the resistance of polyhedral oligomeric silsesquioxane polyimide to atomic-oxygen attack. High Perform. Polym., 2004,16(2):303-318.
DOI URL |
[28] |
VERKER R, GROSSMAN E, GOUZMAN I , et al. POSS-polyimide nanocomposite films: simulated hypervelocity space debris and atomic oxygen effects. High Perform. Polym., 2008,20(4/5):475-491.
DOI URL |
[29] |
VERKER R, GROSSMAN E, ELIAZ N . Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: the role of mechanical properties at elevated temperatures. Acta Mater., 2009,57(4):1112-1119.
DOI URL |
[30] |
FANG G, LI H, LIU J , et al. Intrinsically atomic-oxygen-resistant POSS-containing polyimide aerogels: synthesis and characterization. Chem. Lett., 2015,44(8):1083-1085.
DOI URL |
[31] |
LEI X, QIAO M, TIAN L , et al. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment. Corros. Sci., 2015,98:560-572.
DOI URL |
[32] |
LIU Y Z, SUN Y, ZENG F L , et al. Characterization and analysis on atomic oxygen resistance of POSS/PVDF composites. Appl. Surf. Sci., 2014,320:908-913.
DOI URL |
[33] |
LEI X F, CHEN Y, ZHANG H P , et al. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater.Interfaces, 2013,5(20):10207-10220.
DOI URL |
[34] | DUO S W, SONG M M, LIU T Z , et al. SiO2 Coatings Prepared by Sol-Gel Process Protecting Silver from Atomic Oxygen Erosion. Applied Mechanics and Materials. Switzerland: Trans Tech Publications, 2012: 3044-3047. |
[35] |
HEIMANN R B, KLEIMAN J I, LITOCSKY E , et al. High-pressure cold gas dynamic (CGD)-sprayed alumina-reinforced aluminum coatings for potential application as space construction material. Surf. Coat. Technol., 2014,252:113-119.
DOI URL |
[36] |
GOUZMAN I, GIRSHEVITZ O, GROSSMAN E , et al. Thin film oxide barrier layers: protection of Kapton from space environment by liquid phase deposition of titanium oxide. ACS Appl. Mater.Interfaces, 2010,2(7):1835-1843.
DOI URL |
[37] |
QI H, QIAN Y, XU J , et al. Studies on atomic oxygen erosion resistance of deposited Mg-alloy coating on Kapton. Corros. Sci., 2017,124:56-62.
DOI URL |
[38] |
QI H, QIAN Y, XU J , et al. An AZ31 magnesium alloy coating for protecting polyimide from erosion-corrosion by atomic oxygen. Corros. Sci., 2018,138:170-177.
DOI URL |
[39] |
ERDOĞAN S, KÖYTEPE S, SECKIN T , et al. V2O5-polyimide hybrid material: synthesis, characterization, and sulfur removal properties in fuels. Clean Technol. Environ.Policy, 2014,16(3):619-628.
DOI URL |
[40] |
CHEN L, LIU L, DU Y , et al. Processing and characterization of ZnO nanowire-grown PBO fibers with simultaneously enhanced interfacial and atomic oxygen resistance properties. RSC Adv., 2014,4(104):59869-59876.
DOI URL |
[41] |
GOTLIB-VAINSTEIN K, GOUZMAN I, GIRSHEVITZ O , et al. Liquid phase deposition of a space-durable, antistatic SnO2 coating on Kapton. ACS Appl. Mater.Interfaces, 2015,7(6):3539-3546.
DOI URL |
[42] |
OUYANG Q, WANG W, FU Q , et al. Atomic oxygen irradiation resistance of transparent conductive oxide thin films. Thin Solid Films, 2017,623:31-39.
DOI URL |
[43] |
HUANG Y, LÜ S, TIAN X , et al. Interface analysis of inorganic films on polyimide with atomic oxygen exposure. Surf. Coat. Technol., 2013,216:121-126.
DOI URL |
[44] |
WANG W, LI C, ZHANG J , et al. Effects of atomic oxygen treatment on structures, morphologies and electrical properties of ZnO: Al films. Appl. Surf. Sci., 2010,256(14):4527-4532.
DOI URL |
[45] |
CHAVERZ R, IONESCU E, BALAN C , et al. Effect of ambient atmosphere on crosslinking of polysilazanes.[J]. Appl. Polym. Sci., 2011,119(2):794-802.
DOI URL |
[46] | LI S, ZHANG Y . Effect of synthesis temperature on structure and ceramization process of polyaluminasilazanes. Chinese Journal of Inorganic Chemistry, 2011,27(5):943-950. |
[47] | CHANG Y C, LIU T Z, ZHANG H , et al. Protection of Kapton from Atomic-oxygen Erosion Using a Polysilazane Coating. LIU H W, WANG G, ZHANG G W. Material Science, Civil Engineering and Architecture Science, Mechanical Engineering and Manufacturing Technology II. Switzerland: Trans. Tech. Publications, 2014,651:65-68. |
[48] |
DUO S, CHANG Y C, LIU T , et al. Atomic oxygen erosion resistance of polysiloxane/POSS hybrid coatings on Kapton. Phys.Procedia, 2013,50:337-342.
DOI URL |
[49] |
KLEIMAN J I . Surface modification technologies for durable space polymers. MRS Bull., 2010,35(1):55-65.
DOI URL |
[50] | ISKANDEROVA Z A, KLEIMAN J I, GUDIMENKO Y , et al. Surface Modification of Polymers and Carbon-based Materials by ion Implantation and Oxidative Conversion:U.S., 5,683,757.1997 -11-4. |
[51] | GUDIMENKO Y, KLEIMAN J I, COOL G R , et al. Modification of Subsurface Region of Polymers and Carbon-based Materials:U.S., 5,948,484. 1999 -9-7. |
[52] | GUDIMENKO Y, NG R, KLEIMAN J , et al. Photosil™ Surface Modification Treatment of Polymer-based Space Materials and External Space Components. KLEIMAN J, ISKANDEROVA Z A. Protection of Materials and Structures from Space Environment. U.S.: Kluwer Academic Publishers, 2004: 419-434. |
[53] | ISKANDEROVA Z A, KLEIMAN J I, GUDIMENKO Y , et al. Research Aspects of Scaling-up Implantox Technology for Protection of Polymers in Space by Ion Implantation. Protection of Space Materials from the Space Environment. Dordrecht: Springer, 2001: 145-163. |
[54] | GU H Y . Surface Activation and Silanization of Polyimide. Shanghai: Shanghai Institute of Ceramics PhD Thesis, 2015. |
[55] |
SHU M, LI Z, MAN Y , et al. Surface modification of poly (4, 4°-oxydiphenylene pyromellitimide)(Kapton) by alkali solution and its applications to atomic oxygen protective coating. Corros. Sci., 2016,112:418-425.
DOI URL |
[56] |
LIU K, MU H, SHU M , et al. Improved adhesion between SnO2/SiO2 coating and polyimide film and its applications to atomic oxygen protection. Colloids Surf.A, 2017,529:356-362.
DOI URL |
[57] | WANG D, GAO Z M, LI Z H , et al. Analysis of erosion effect of environmental factors on polyimide films and coatings. Surface Technology, 2018,47(1):123-128. |
[58] |
ISKANDEROVA Z A, KLEIMAN J I, GUDIMENKO Y , et al. Influence of content and structure of hydrocarbon polymers on erosion by atomic oxygen. J. Spacer.Rockets, 1995,32(5):878-884.
DOI URL |
[59] |
XIE Y, GAO Y, QIN X , et al. Preparation and properties of atomic oxygen protective films deposited on Kapton by solvothermal and Sol-Gel methods. Surf. Coat. Technol., 2012,206(21):4384-4388.
DOI URL |
[60] | BANKS B A, DE GROH K K, AUER B M , et al. LDEF. Monte Carlo Modeling of Atomic Oxygen Attack of Polymers with Protective Coatings on LDEF. N93-28282,Ohio: NASA , 1993: 1137-1150. |
[61] | WEAVER A B, KULAKHMETOY M, ALEXEENKO A A . Consistent atomic oxygen model for firect dimulation monte carlo below 1000 kelvin. J. Thermophys.Heat Transfer, 2016: 689-694. |
[62] |
LIU Y, LI G . Numerical simulation on atomic oxygen undercutting of Kapton film in low earth orbit. Acta Astronaut., 2010,67(3/4):388-395.
DOI URL |
[63] |
HUANG Y, TIAN X, LÜ S , et al. An undercutting model of atomic oxygen for multilayer silica/alumina films fabricated by plasma immersion implantation and deposition on polyimide. Appl. Surf. Sci., 2011,257(21):9158-9163.
DOI URL |
[64] | BANKS B A, DE GROH K K, KNEUBEL C A . NASA STI Program. Comparison of the Results of MISSE 6 Atomic Oxygen Erosion Yields of Layered Kapton H Films with Monte Carlo Computational Predictions, NASA/TM—2014-218411,Ohio: NASA, 2014. |
[65] | DUO S W, LI M S, ZHANG Y M . Erosion theoretical and predictive models of atomic oxygen for space materials in low earth orbit. |
Chinese Journal of Materials Reaserch, 2003,17(2):113-121. | |
[66] |
LEE C H, CHEN L W . Reactive probability of atomic oxygen with material surfaces in low earth orbit. J. Spacecr.Rockets, 2000,37(2):252-256.
DOI URL |
[67] |
LIU T, SUN Q, MENG J , et al. Degradation modeling of satellite thermal control coatings in a low earth orbit environment. Sol.Energy, 2016,139:467-474.
DOI URL |
[68] |
CHEN L, LI Z, LEE C H , et al. Unified model for low-earth- orbital atomic-oxygen and atomic-oxygen/ultraviolet induced erosion of polymeric materials. Aerosp. Sci. Technol., 2016,53:194-206.
DOI URL |
[69] |
VAN DUIN A C T, DASGUPTA S, LORANT F , et al. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 2001,105(41):9396-9409.
DOI URL |
[70] |
RAHNAMOUN A, VAN DUIN A C T . Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the reaxff reactive force-field method. J. Phys. Chem. A, 2014,118(15):2780-2787.
DOI URL |
[71] |
RAHMANI F, NOURANIAN S, LI X , et al. Reactive molecular simulation of the damage mitigation efficacy of POSS-, graphene-, and carbon nanotube-loaded polyimide coatings exposed to atomic oxygen bombardment. ACS Appl. Mater. Interfaces, 2017,9(14):12802-12811.
DOI URL |
[72] |
ZENG F, PENG C, LIU Y , et al. Reactive molecular dynamics simulations on the disintegration of PVDF, FP-POSS, and their composite during atomic oxygen impact. J. Phys. Chem. A, 2015,119(30):8359-8368.
DOI URL |
[73] | GINDULYTE A, MASSA L, BANKS B A , et al. Degradation of Polymers by O (3 P) in Low Earth Orbit. Protection of Materials and Structures from Space Environment. Dordrecht: Springer, 2004: 299-306. |
[74] |
ZHANG H, REN S, PU J , et al. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation. Appl. Surf. Sci., 2018,444:28-35.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[7] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[8] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[11] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 蔡和庆, 韩璐, 杨松松, 薛新玉, 张扣, 孙志成, 刘儒平, 胡堃, 危岩. 小粒径Fe3O4-DMSA-PEI磁性纳米颗粒的制备及其基因负载能力研究[J]. 无机材料学报, 2024, 39(5): 517-524. |
[14] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[15] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||