无机材料学报 ›› 2019, Vol. 34 ›› Issue (3): 236-246.DOI: 10.15541/jim20180321 CSTR: 32189.14.10.15541/jim20180321
所属专题: 热电材料与器件
李鑫, 席丽丽, 杨炯
收稿日期:
2018-07-16
修回日期:
2018-10-02
出版日期:
2019-03-20
网络出版日期:
2019-02-26
作者简介:
李 鑫(1993-), 女, 博士研究生. E-mail: xinli@t.shu.edu.cn
基金资助:
LI Xin, XI Li-Li, YANG Jiong
Received:
2018-07-16
Revised:
2018-10-02
Published:
2019-03-20
Online:
2019-02-26
Supported by:
摘要:
热电材料是一种新型能量转换材料, 在温差发电或通电制冷等领域具有广泛应用。热电优值ZT值是衡量热电材料能量转换效率的关键参数, ZT值要求热电材料具有优异的电输运性能及较低的热导率。传统第一性原理热电材料研究往往关注少量样本下的电热输运性质理解与优化, 很难得到系统性的规律, 也不利于新体系的设计优化。材料基因组计划力求通过大数据、高通量手段去加速材料设计与发现, 具有广阔的发展前景。在热电材料研究领域, 第一性原理高通量计算也将在新材料预测与性能优化等方面起到越来越重要的作用。另一方面, 高通量研究也带来了新的挑战, 譬如电热输运性质的高通量算法发展、大数据分析手段等等, 这些方面的问题决定了高通量方法在材料应用中的效率与准确性。本文综述了热电材料中现有的电热输运性质高通量计算方法, 介绍了这些方法具体的应用案例, 并对高通量与热电材料结合的未来发展趋势进行了展望。
中图分类号:
李鑫, 席丽丽, 杨炯. 热电材料的第一性原理高通量研究[J]. 无机材料学报, 2019, 34(3): 236-246.
LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236-246.
图5 硫族类金刚石化合物的功率因子分布图(a)和带空位的三元硫族类金刚石结构图(b)[20]
Fig. 5 Power factor of chalcogenides with diamond-like structures (a) and vacancy-containing ternary chalcogenides (b)[20]
图8 半哈斯勒合金热导率性质三种预测结果[16]
Fig. 8 Three prediction models of the κL in half-Heusler compounds[16](a) Frequency densities of the estimators of thermal conductivity at 300 Kκtransfand κforest;and (b) distribution of κanhover the 75 thermodynamically stable half-Heuslers
[1] | SEEBECK T J. On the magnetic polarization of metals and minerals by temperature differences. Annals of Physics, 1826, 82(3): 253-286. |
[2] | PELTIER J C A. New experiments on the heat effects of electric currents. Annals of Chemistry and Physics, 1834, 56: 371-386. |
[3] | ZHANG Q, LIAO J, TANG Y, et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science, 2017, 10(4): 956-963. |
[4] | BULMAN G E, SIIVOLA E, SHEN B, et al.Large external delta t and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices. Applied Physics Letters, 2006, 89(12): 122117-1-3. |
[5] | SHAKOURI A, ZHANG Y.On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 65-69. |
[6] | WANG W, JIA F, HUANG Q, et al.A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering, 2005, 77(3/4): 223-229. |
[7] | LI JING-FENG.Macrofabrication technology of three-dimensional microdevices and their MEMS applications. Journal of Inorganic Materials,2002, 17(4):657-664. |
[8] | HAUTIE G, JAIN A, CHEN H, et al.Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. Journal of Materials Chemistry, 2011, 21(43): 17147-17153. |
[9] | DE JONG M, CHEN W, ANGSTEN T, et al.Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data, 2015, 2: 150009-1-13. |
[10] | TAYLOR R H, CURTAROLO S, HART G L W. Guiding the experimental discovery of magnesium alloys. Physical Review B, 2011, 84(8): 084101-1-17. |
[11] | HAUTIER G, FISCHER C, EHRLACHER V, et al.Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem., 2011, 50(2): 656-663. |
[12] | CHEN W, POHLS JAN-HENDRIK, HAUTIER G, et al.Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 2016, 4(20): 4414-4426. |
[13] | TOHER C, PLATA J J, LEVY O, et al. High-throughput computational screening of thermal conductivity, debye temperature,gruneisen parameter using a quasiharmonic debye model. Physical Review B, 2014, 90(17): 174107-1-14. |
[14] | BLANCO M, FRANCISCO E, LUANA V.Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model. Computer Physics Communications, 2004, 158(1): 57-72. |
[15] | WANG S, WANG Z, SETYAWAN W, et al.Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 2011, 1(2): 021012-1-8. |
[16] | CARRETE J, LI W, MINGO N, et al.Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019-1-9. |
[17] | GOLDSMID H, DOUGLAS R.The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386-390. |
[18] | CHASMAR R, STRATTON R.The thermoelectric figure of merit and its relation to thermoelectric generators. International Journal of Electronics, 1959, 7(1): 52-72. |
[19] | SLACK G A.Nonmetallic crystals with high thermal conductivity. Journal of Physics & Chemistry of Solids, 1973, 34(2): 321-335. |
[20] | XI L, PAN S, LI X, et al.Discovery of high performance thermoelectric chalcogenides through reliable high throughput material screening. Journal of the American Chemical Society, 2018, 140(34): 10785-10793. |
[21] | YANG J, XI L, QIU W, et al.On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Computational Materials, 2016, 2:15015-1-17. |
[22] | GIBBS Z M, RICCI F, LI G, et al.Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017, 3(1): 8-1-7. |
[23] | CHEN LI-DONG, XIONG ZHEN, BAI SHENG-QIANG.Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials,2010, 25(6):561-568. |
[24] | YAN J, GORAI P, ORTIZ B, et al.Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 2015, 8(3): 983-994. |
[25] | ANDERSON ORSON L.A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909-917. |
[26] | HILL RICHARD.The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952,65(5): 349-354. |
[27] | JIA T, CHEN G, ZHANG Y. Lattice thermal conductivity evaluated using elastic properties. Physical Review B, 2017, 95(15): 155206- 1-6. |
[28] | CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163: 67-74. |
[29] | CAHILL D G, POHL R.Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 1988, 39(1): 93-121. |
[30] | CAHILL D G, BRAUN P V, CHEN G, et al.Nanoscale thermal transport. II.2003-2012. Applied Physics Reviews, 2014, 1(1): 011305-1-45. |
[31] | HAUKE J, KOSSOWSKI T.Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 2011, 30(2): 87-93. |
[32] | YANG J, LI H, WU T, et al.Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Advanced Functional Materials, 2008, 18(19):2880-2888. |
[33] | YING P, LI X, WANG Y, et al.Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α- MgAgSb thermoelectric materials. Advanced Functional Materials, 2017, 27(1): 1604145-1-8. |
[34] | LI W, LIN S, GE B, et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3(11): 1600196-1-7. |
[35] | RICCI F, CHEN W, AYDEMIR U, et al.An ab initio electronic transport database for inorganic materials. Sci. Data, 2017, 4:170085-1-13. |
[36] | ZHU H, HAUTIER G, AYDEMIR U, et al.Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. Journal of Materials Chemistry C, 2015, 3(40): 10554-10565. |
[37] | AYDEMIR U, P HLS J, ZHU H, et al.YCuTe2: a member of a new class of thermoelectric materials with cute4-based layered structure. Journal of Materials Chemistry A, 2016, 4(7): 2461-2472. |
[38] | BERA C, SOULIER M, NAVONE C, et al.Thermoelectric properties of nanostructured Si1-xGex and potential for further improvement. Journal of Applied Physics, 2010, 108(12): 124306-1-8. |
[39] | ZIOLKOWSKI P, WAMBACH M, LUDWIG A, et al.Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Combinatorial Science, 2018, 20(1): 1-18. |
[40] | CARRETE J, MINGO N, WANG S D, et al.Nanograined half-heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Advanced Functional Materials, 2014, 24(47): 7427-7432. |
[41] | LIAW A, WIENER M.Classification and regression by randomforest. R News, 2002, 23(23): 18-22. |
[42] | JOLLIFFE I T.Principal component analysis. Berlin, Heidelberg: Springer, 2011: 1094-1096. |
[43] | KRESSE G, FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186. |
[44] | ONG S P, CHOLIA S, JAIN A, et al.The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (rest) principles. Computational Materials Science, 2015, 97: 209-215. |
[45] | ONG S P, RICHARDS W D, JAIN A, et al.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Computational Materials Science, 2013, 68: 314-319. |
[46] | JAIN A, ONG S P, HAUTIER G, et al.The materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002-1-11. |
[47] | ZHOU F, COCOCCIONI M, MARIANETTI C A, et al.First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Physical Review B, 2004, 70(23): 235021- 1-8. |
[48] | WANG L, MAXISCH T, CEDER G.A first-principles approach to studying the thermal stability of oxide cathode materials. Chemistry of Materials, 2007, 19(3): 543-552. |
[49] | ONG S P, JAIN A, HAUTIER G, et al.Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochemistry Communications, 2010, 12(3): 427-430. |
[50] | ADAMS S, RAO R P.High power lithium ion battery materials by computational design. Physica Status Solidi a-Applications and Materials Science, 2011, 208(8): 1746-1753. |
[51] | GIANNOZZI P, BARONI S, BONINI N, et al.Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter, 2009, 21(39): 395502-1-19. |
[52] | ISAYEV O, OSES C, TOHER C, et al.Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun., 2017, 8: 15679-1-12. |
[53] | SUPKA A R, LYONS T E, LIYANAGE L, et al.AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 2017, 136: 76-84. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[8] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[9] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[10] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[11] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[12] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[13] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[14] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[15] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||