无机材料学报 ›› 2019, Vol. 34 ›› Issue (12): 1245-1256.DOI: 10.15541/jim20190086 CSTR: 32189.14.10.15541/jim20190086
所属专题: 二维材料
• 综述 • 下一篇
张兴旺1,2,高孟磊1,2,孟军华1,2
收稿日期:
2019-02-27
修回日期:
2019-04-19
出版日期:
2019-12-20
网络出版日期:
2019-06-17
作者简介:
张兴旺(1972-), 男, 博士, 研究员. E-mail:xwzhang@semi.ac.cn
基金资助:
ZHANG Xing-Wang1,2,GAO Meng-Lei1,2,MENG Jun-Hua1,2
Received:
2019-02-27
Revised:
2019-04-19
Published:
2019-12-20
Online:
2019-06-17
Supported by:
摘要:
六方氮化硼(h-BN)二维原子晶体以其独特的结构、优异的性质以及广泛的应用前景引起了人们的普遍关注。高质量h-BN材料的制备是其性质研究与实际应用的前提。机械剥离的h-BN尺寸有限, 普遍采用的化学气相沉积(CVD)技术通常以过渡金属为衬底, 器件应用时需要将h-BN转移到其它衬底上。因此, 在介质衬底上直接生长h-BN成为二维材料研究领域的一个重要发展方向。本文总结了近年来介质衬底(包括: Si基衬底、蓝宝石衬底和石英衬底等)上直接生长h-BN二维原子晶体的主要进展。人们采用CVD、金属有机气相外延法(MOVPE)、物理气相沉积法(PVD)等方法, 通过提高生长温度、衬底表面处理、两步生长等工艺实现了介质衬底上直接生长h-BN。此外, 还介绍了介质衬底上h-BN二维原子晶体的主要应用。
中图分类号:
张兴旺, 高孟磊, 孟军华. 介质衬底上生长h-BN二维原子晶体的研究进展[J]. 无机材料学报, 2019, 34(12): 1245-1256.
ZHANG Xing-Wang, GAO Meng-Lei, MENG Jun-Hua. Research Progress of Direct Growth of Two-dimensional Hexagonal Boron Nitride on Dielectric Substrates[J]. Journal of Inorganic Materials, 2019, 34(12): 1245-1256.
Preparation method | Advantages | Disadvantages |
---|---|---|
CVD | Low equipment cost, suitable for preparing large area sample | The complicated process, the interrelated growth parameters, many by-products |
MOVPE | The cold wall reaction chamber which can prevent precursors from reacting on the inner wall | Highly toxic precursors, high growth temperature (>1000 ℃) |
PLD, ALD and Magnetron sputtering | Easy to control the process, the low growth temperature (250-700 ℃) | The poor material quality, mostly amorphous |
MBE | High material quality | Expensive equipment and high growth temperature (>1300 ℃) |
Two-step method | The lower growth temperature (500-1000 ℃), simple process, suitable for preparing large area and patterned sample | Impurities are introduced during spin coating |
表1 采用不同方法在介质衬底上制备h-BN二维晶体的优缺点
Table 1 Comparison of different methods for preparing 2D h-BN on dielectric substrates
Preparation method | Advantages | Disadvantages |
---|---|---|
CVD | Low equipment cost, suitable for preparing large area sample | The complicated process, the interrelated growth parameters, many by-products |
MOVPE | The cold wall reaction chamber which can prevent precursors from reacting on the inner wall | Highly toxic precursors, high growth temperature (>1000 ℃) |
PLD, ALD and Magnetron sputtering | Easy to control the process, the low growth temperature (250-700 ℃) | The poor material quality, mostly amorphous |
MBE | High material quality | Expensive equipment and high growth temperature (>1300 ℃) |
Two-step method | The lower growth temperature (500-1000 ℃), simple process, suitable for preparing large area and patterned sample | Impurities are introduced during spin coating |
图1 (a)SiO2衬底上生长20 min的h-BN的AFM图(插图为对应的傅里叶变换图像)[26]; (b)Si衬底上BN纳米片的SEM照片[27]; (c)在蓝宝石衬底上使用纳米晶石墨烯合成h-BN的示意图及其TEM、HRTEM照片[28]; (d)SiO2衬底和(e)石英衬底上h-BN的照片[29,30]; (f)蓝宝石衬底上h-BN的照片; (g)蓝宝石衬底上h-BN的低能电子衍射图; 沿不同方向生长的h-BN的HRTEM照片: (h)垂直于Al2O3(11ˉ20)方向, (i)平行于Al2O3(11ˉ20)方向[31]
Fig. 1 (a) AFM image of h-BN on SiO2 for 20 min with inset image showing the FFT data[26]; (b) SEM image of the BN sheets grown on Si[27]; (c) Synthesis of h-BN film on sapphire substrate using nc-G and corresponding cross-sectional TEM and HRTEM images[28]; Camera view of h-BN on (d) SiO2 and (e) quartz surface[29,30]; (f) Photograph of EM-h-BN on sapphire substrate; (g) LEED pattern of h-BN grown on sapphire substrate; HR-TEM images of multilayer h-BN grown (h) perpendicular to Al2O3 (11ˉ20) and (i) parallel to Al2O3 (11ˉ20)[31]
图2 (a)1000 ℃下生长30 min的BN薄膜的AFM形貌及粗糙度[35]: (a1)V/III = 450, (a2)V/III = 2250; (b)BN薄膜的截面TEM照片[35]: (b1)V/III = 450, (b2)V/III = 2700; (c)在(c1)流量连续和(c2)流量交替模式下, 生长8 h的h-BN薄膜的表面形貌[36,37]
Fig. 2 (a) AFM micrographs with line scans and surface roughness measured on BN films grown at 1000 ℃ for 30 min[35]: (a1) V/III = 450, (a2) V/III = 2250; (b) Cross sectional TEM images of BN layer deposited using (b1) V/III ratio of 450 and (b2) 2700[35]; (c) Surface topography of h-BN films deposited for 8 h (c1) under continuous flow conditions and (c2) using FM scheme[36,37]
图3 (a)PLD设备示意图以及热解石墨衬底上h-BN和蓝宝石衬底上a-BN的截面TEM照片[42]; (b)蓝宝石衬底上非晶BN薄膜的高分辨SEM照片[43]; (c)Si衬底上h-BN薄膜的截面TEM照片[44]; (d)Si衬底上h-BN层状结构的高分辨TEM照片[44];在 (e~f)1690 ℃下生长3 h, (e)蓝宝石衬底和(f)热解石墨衬底上h-BN的AFM图[45]
Fig. 3 (a) Schematic of PLD setup and the cross-sectional TEM image of h-BN on HOPG and a-BN on sapphire[42]; (b) High magnification SEM image of an amorphous BN film deposited on sapphire substrate[43]; (c) Cross-sectional TEM image of h-BN film on Si[44]; (d) High-magnification TEM image of the h-BN layered structure on Si[44]; (e-f) AFM images of h-BN grown on (e) sapphire and (f) HOPG for 3 h, 1690 ℃[45]
图4 (a)通过扩散-偏析方法生长h-BN的原理图[47]和(b)沉积-转换两步法合成h-BN薄膜的工艺流程图[48]
Fig. 4 (a) Growth mechanism of h-BN by diffusion and segregation[47] and (b) schematic illustration of process flow for synthesis of h-BN films by a two-step method[48]
图5 (a)RMS随V/III比例变化的关系图; (b)不做表面氮处理与氮处理10 min条件下, BN厚度随V/III比例变化的关系图(插图是V/III比例为2250时, BN厚度随生长时间变化的关系图); (c)蓝宝石衬底上h-BN的截面STEM照片及对应区域的衍射图; (d)Si3N4/Si衬底上h-BN的照片; (e)Si3N4/Si, SiO2/Si和Si衬底上h-BN厚度与生长时间的关系图[30, 49-53]
Fig. 5 (a) Plot of RMS determined by AFM vs. V/III; (b) Thickness vs. V/III for BN films grown on sapphire with and without the pre-growth nitridation process with insetshowing thickness vs. growth time for films grown using a V/III ratio of 2250; (c) Cross-sectional STEM image of h-BN grown on sapphire and diffraction patterns for selected areas I and II; (d) Camera view of h-BN on Si3N4/Si; (e) Variations of h-BN film thickness at different CVD growth times for Si3N4/Si, SiO2/Si, and Si substrates[30, 49-53]
图6 (a)h-BN光探测器的响应光谱及其212 nm光照和暗态下的I-V曲线[60]; (b)转移下来的薄膜的光学显微镜图及其柔性器件的照片[61]; (c)偏压30 V下, h-BN MSM探测器的响应光谱和响应时间[62]; (d)量子阱器件的设计、释放和转移过程示意图[67]; (e)转移后器件的EL光谱[68]
Fig. 6 (a) Response spectrum of the h-BN detector and I-V curves under 212 nm laser irradiation and dark condition[60]; (b) Microscope image of the transferred film and the photograph of the flexible metal-semiconductormetal device[61]; (c) The relative spectral response and photocurrent decay kinetics of h-BN MSM detector measured at Vb = 30 V (Inset showing a microscope image of the h-BN MSM photodetector)[62]; (d) Schematic illustrations of the MQW materials design, release and transfer processes[67]; (e) Electroluminescence spectra from the transferred LED[68]
[1] | FERRARI A C, BONACCORSO F, FAL´KO V , et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015,7(11):4598-4810. |
[2] | TAN C, CAO X, WU X J ,et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017,117(9):6225-6331. |
[3] | GENG D, YANG H Y . Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides. Adv. Mater., 2018, 30 (45): 1800865-1-23. |
[4] | LI L H, CHEN Y . Atomically thin boron nitride unique properties and applications. Adv. Funct. Mater., 2016,26(16):2594-2608. |
[5] | IZYUMSKAYA N, DEMCHENKO D O, DAS S , et al. Recent development of boron nitride towards electronic applications. Adv. Electron. Mater., 2017,3(5):1600485. |
[6] | DEAN C R, YOUNG A F, MERIC I , et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech., 2010,5:722-726. |
[7] | WANG L, MERIC I, HUANG P Y , et al. One-dimensional electrical contact to a two-dimensional material. Science, 2013,324(6158):614-617. |
[8] | LEE K H, SHIN H J, LEE J , et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett., 2012,12(2):714-718. |
[9] | LEE J S, CHOI S H, YUN S J , et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018,362(6416):817-821. |
[10] | BRITNELL L, GORBACHEV R V, JALIL R , et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012,335(6071):947-950. |
[11] | WANG H, ZHAO Y. XIE Y , et al. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017,38(3):031003. |
[12] | KHAN M H, LIU H K, SUN X , et al. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Materials Today, 2017,20(10):611-628. |
[13] | SUN J, LU C, SONG Y , et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev., 2018,47:4242-4257 . |
[14] | SONG L, CI L, LU H , et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010,10(8):3209-3215. |
[15] | LU G, WU T, YUAN Q , et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun., 2015, 6: 6160-1-7. |
[16] | CANEVA S, WEATHERUP R S, BAYER B C , et al. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett., 2015,15(3):1867-1875. |
[17] | JI Y, CALDERON B, HAN Y , et al. Chemical vapor deposition growth of large single-crystal mono-, bi-, tri-layer hexagonal boron nitride and their interlayer stacking. ACS Nano, 2017,11(12):12057-12066. |
[18] | LIU L, SIEGEL D A, CHEN W , et al. Unusual role of epilayer- substrate interactions in determining orientational relations in van der Waals epitaxy. Proc. Natl. Acad. Sci. USA, 2014,111(47):16670-16675. |
[19] | YIN J, LIU X F, LU W L , et al. Aligned growth of hexagonal boron nitride monolayer on germanium. Small, 2015,11(40):5375-5380. |
[20] | WANG H L, ZHANG X W, LIU H , et al. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition. Adv. Mater., 2015,27(48):8109-8115. |
[21] | MENG J H, ZHANG X W, WANG Y , et al. Aligned growth of millimeter-size hexagonal boron nitride single-crystal domains on epitaxial nickel thin film. Small, 2017, 13(18): 1604179-1-8. |
[22] | MENG J H, MING B M, ZHANG X W , et al. Controlled growth of unidirectionally aligned hexagonal boron nitride domains on single crystal Ni (111)/MgO thin films. Cryst. Growth Des., 2019,19(1):453-459. |
[23] | OH H, JO J, TCHOE Y , et al. Centimeter-sized epitaxial h-BN films. NPG Asia Materials, 2016,8:e330. |
[24] | KIM K, CHOI J Y, KIM T , et al. A role for graphene in silicon- based semiconductor devices. Nature, 2011,479:338-344. |
[25] | TAY R Y, TSANG S H, LOEBLEIN M , et al. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates. Appl. Phys. Lett., 2015, 106(10): 101901-1-5. |
[26] | WU Q, LEE J, SUN J , et al. In situ direct growth of graphene/ hexagonal boron nitride heterostructure on SiO2 substrate without metal catalyst. Carbon, 2018,138:76-80. |
[27] | QIN L, YU J, LI M , et al. Catalyst-free growth of mono- Catalyst-free growth of mono- and few-atomic-layer boron nitride sheets by chemical vapor deposition. Nanotechnology, 2011, 22(21): 215602-1-7. |
[28] | LEE K H, SHIN H J, KUMAR B , et al. Nanocrystalline graphene tailored hexagonal boron nitride thin films. Angew. Chem. Int. Ed., 2014,53(43):11493-11497. |
[29] | CHEN Y, LIANG H, XIA X , et al. Growth temperature impact on film quality of hBN grown on Al2O3 using non-catalyzed borazane CVD. J. Mater. Sci.: Mater. Electron., 2017,28(19):14341-14347. |
[30] | BEHURA S, NGUYEN P, CHE S , et al. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J. Am. Chem. Soc, 2015,137(40):13060-13065. |
[31] | JANG A R, HONG S, HYUN C , et al. Wafer-scale and wrinkle- free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett., 2016,16(5):3360-3366. |
[32] | CHUBAROV M, PEDERSEN H, HÖGBERG H , et al. Growth of high quality epitaxial rhombohedral boron nitride. Cryst. Growth Des., 2012,12(6):3215-3220. |
[33] | PADUANO Q S, SNURE M, BONDY J , et al. Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition. Appl. Phys. Express, 2014, 7(7): 071004-1-4. |
[34] | PADUANO Q, SNURE M, WEYBURNE D , et al. Metalorganic chemical vapor deposition of few-layer sp2 bonded boron nitride films. J. Cryst. Growth, 2016,449:148-155. |
[35] | VANGALA S, SIEGEL G, PRUSNICK T , et al. Wafer scale BN on sapphire substrates for improved grapheme transport. Sci. Rep., 2018, 8(1): 8842-1-9. |
[36] | YANG X, NITTA S, NAGAMATSU K , et al. Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy. J. Cryst. Growth, 2018,482:1-8. |
[37] | CHUGH D, LEUNG J W, LI L , et al. Flow modulation epitaxy of hexagonal boron nitride. 2D Mater., 2018, 5(4): 045018-1-10. |
[38] | RICE A, ALLERMAN A, CRAWFORD M , et al. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride. J. Cryst. Growth, 2018,485:90-95. |
[39] | LI X, SUNDARAM S, GMILI Y E , et al. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy. Cryst. Growth Des., 2016,16(6):3409-3415. |
[40] | SUTTER P, LAHIRI J, ZAHL P , et al. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric Films. Nano Lett., 2013,13(1):276-281. |
[41] | WANG H L, ZHANG X W, MENG J H , et al. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition. Small, 2015,11(13):1542-1547. |
[42] | GLAVIN N R, JESPERSEN M L, CHECK M H , et al. Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition. Thin Solid Films, 2014,572:245-250. |
[43] | STEWART D M, LAD R J . Enhanced crystallinity of h-BN films induced by substrate bias during magnetron sputtering. Phys. Status Solidi B, 2017, 255(3): 1700458-1-5. |
[44] | PARK H, KIM T K, CHO S W , et al. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition. Sci. Rep., 2017, 7: 40091-1-8. |
[45] | VUONG T Q P, CASSABOISs G, VALVIN P , et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy. 2D Mater., 2017, 4(2): 021023-1-7. |
[46] | BRESNEHAN M S, HOLLANDER M J, WETHERINGTON M , et al. Prospects of direct growth boron nitride films as substrates for graphene electronics. J. Mater. Res., 2014,29(3):459-471. |
[47] | SONDE S, DOLOCAN A, LU N , et al. Ultrathin, wafer-scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism. 2D Mater., 2017, 4(2): 025052-1-10. |
[48] | LIU T, PREMASIRI K, SUI Y , et al. Direct, transfer-free growth of large-area hexagonal boron nitride films by plasma-enhanced chemical film conversion (PECFC) of printable, solution-processed ammonia borane. ACS Appl. Mater. Interfaces, 2018,10(50):43936-43945. |
[49] | SNURE M, PADUANO Q, KIEFER A . Effect of surface nitridation on the epitaxial growth of few-layer sp2 BN. J. Cryst. Growth, 2014,436:16-22. |
[50] | AHMED K, DAHAL R, WELTZ A , et al. Effects of sapphire nitridation and growth temperature on the epitaxial growth of hexagonal boron nitride on sapphire. Mater. Res. Express, 2017, 4(1): 015007-1-6. |
[51] | YANG X, NITTA S, PRISTOVSEK M , et al. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy. Appl. Phys. Express, 2018, 11(5): 051002-1-4. |
[52] | SUNDARAM S, LI X, ALAM S , et al. Wafer-scale MOVPE growth and characterization of highly ordered h-BN on patterned sapphire substrates. J. Cryst. Growth, 2019,509:40-43. |
[53] | BEHURA S, NGUYEN P, DEBBARMA R , et al. Chemical interaction- guided, metal-free growth of large-area hexagonal boron nitride on silicon-based substrates. ACS Nano, 2017,11(5):4985-4994. |
[54] | LI Q, WU Q, GAO J , et al. Direct growth of 5 in. uniform hexagonal boron nitride on glass for high-performance deep-ultraviolet light-emitting diodes. Adv. Mater. Interfaces, 2018, 5(18): 1800662-1-8. |
[55] | MAJETY S, LI J, ZHAO W P , et al. Hexagonal boron nitride and 6H- SiC heterostructures. Appl. Phys. Lett., 2013, 102(21): 213505-1-4. |
[56] | SHIN H C, JANG Y, KIM T H , et al. Epitaxial growth of a single- crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor. J. Am. Chem. Soc., 2015,137(21):6897-6905. |
[57] | WANG X B, WENG Q H, WANG X , et al. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. ACS Nano, 2014,8(9):9081-9088. |
[58] | OROFEO C M, SUZUKI S, HIBINO H . Ultrathin chemical vapor deposition (CVD)-grown hexagonal boron nitride as a high-quality dielectric for tunneling devices on rigid and flexible substrates. J. Phys. Chem. C, 2014,118(6):3340-3346. |
[59] | CHUANG H J, CHAMLAGAIN B, KOEHLER M , et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett., 2016,16(3):1896-1902. |
[60] | LIU H, MENG J, ZHANG X , et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale, 2018,10(12):5559-5565. |
[61] | LI X, JORDAN M B, AYARI T , et al. Flexible metal- semiconductor-metal device prototype on waferscale thick boron nitride layers grown by MOVPE. Sci. Rep., 2017, 7(1): 786-1-8. |
[62] | LI J, MAJETY S, DAHAL R , et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers. Appl. Phys. Lett., 2012, 101(17): 171112-1-4. |
[63] | AHMED K, DAHAL R, WELTZ A , et al. Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection. Appl. Phys. Lett., 2016, 109(11): 113501-1-4. |
[64] | THANH D T, JIN J, KO K B , et al. Hexagonal boron nitride pattern embedded in AIN template layer for visible-blind ultraviolet photodetectors. Opt. Mater. Express, 2017,7(5):1463-1472. |
[65] | WU Q, YAN J, ZHANG L , et al. Growth mechanism of AlN on hexagonal BN/sapphire substrate by metal-organic chemical vapor deposition. Cryst. Eng. Comm., 2017,19(39):5849-5856. |
[66] | WU Q, GUO Y, SUNDARAM S , et al. Exfoliation of AlN film using two-dimensional multilayer hexagonal BN for deep-ultraviolet light-emitting diodes. Appl. Phys. Express, 2019, 12(1): 015505-1-5. |
[67] | KOBAYASHI Y, KUMAKURA K, AKASAKA T , et al. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature, 2012,484:223-227. |
[68] | SUNDARAM S, LI X, ALAM S , et al. MOVPE van der Waals epitaxial growth of AlGaN/AlGaN multiple quantum well structures with deep UV emission on large scale 2D h-BN buffered sapphire substrates. J. Cryst. Growth, 2019,507:352-356. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||