无机材料学报 ›› 2019, Vol. 34 ›› Issue (12): 1257-1264.DOI: 10.15541/jim20190098 CSTR: 32189.14.10.15541/jim20190098
叶长辉,顾瑜佳,王贵欣,毕丽丽
收稿日期:
2019-03-04
修回日期:
2019-04-28
出版日期:
2019-12-20
网络出版日期:
2019-06-17
作者简介:
叶长辉(1973-), 男, 教授. E-mail: chye@zjut.edu.cn
基金资助:
YE Chang-Hui,GU Yu-Jia,WANG Gui-Xin,BI Li-Li
Received:
2019-03-04
Revised:
2019-04-28
Published:
2019-12-20
Online:
2019-06-17
Supported by:
摘要:
银纳米线透明导电薄膜材料作为新兴的无铟电极材料, 以其优越的光电性能和力学柔韧性, 在显示器件、触控面板、太阳能电池、智能加热和电磁屏蔽等领域崭露头角, 吸引越来越多的来自科研界及产业界的关注。然而, 银纳米线透明导电薄膜在应用中面临着较为严重的稳定性问题, 主要表现为容易被痕量含硫气体腐蚀, 在300 ℃以上的温度下纳米线出现断裂和球形化等结构失稳现象, 在紫外光照条件下腐蚀及球形化加剧, 在加载电场条件下出现离子迁移并产生孔洞及断裂现象。本文详细介绍了以上各种失效现象, 分析了失效的微观机制, 介绍了解决各种失效现象的具体措施。银纳米线透明导电薄膜失效行为的研究, 有助于进一步推动该材料的实际应用进程。
中图分类号:
叶长辉, 顾瑜佳, 王贵欣, 毕丽丽. 银纳米线透明导电薄膜的失效机理研究[J]. 无机材料学报, 2019, 34(12): 1257-1264.
YE Chang-Hui, GU Yu-Jia, WANG Gui-Xin, BI Li-Li. Degradation Mechanism of Silver Nanowire Transparent Conductive Films: a Review[J]. Journal of Inorganic Materials, 2019, 34(12): 1257-1264.
图1 银纳米线的不同失效形式
Fig. 1 Different failure modes of silver nanowires (a) Chemical corrosion[10]; (b) Thermal failure[15]; (c) Joule heat failure[18]; (d) Electromigration[27]
图2 同一银纳米线样品在环境条件下放置不同时间的透射电镜照片[10]
Fig. 2 TEM images of the same AgNW sample stored for different time after exposure to air at ambient condtions[10] (a) The sample just after synthesis; (b) The sample stored for 3 w; (c-e) The sample stored for 4, 5, and 24 w, respectively; (f) High-resolution TEM image of one of the crystallites that compose the shell with inset showing to the FFT of the image
Parameters | Measured values | Theoretical values |
---|---|---|
d(013)/nm | 0.242 | 0.242 |
d(111)/nm | 0.305 | 0.308 |
${{d}_{(10\bar{2})}}/\text{nm}$ | 0.311 | 0.311 |
(013) ∠ (111)/(°) | 49.1 | 50.0 |
(111) ∠ $(10\bar{2})$./(°) | 79.2 | 79.4 |
$(10\bar{2})$.∠ (013)/(°) | 51.7 | 50.6 |
表1 图2(f)经傅立叶变换(FFT)后测量所得晶面间距和晶面夹角[10]
Table 1 Interplanar distances and angles between lattice planes from the FFT in Fig. 2(f)[10]
Parameters | Measured values | Theoretical values |
---|---|---|
d(013)/nm | 0.242 | 0.242 |
d(111)/nm | 0.305 | 0.308 |
${{d}_{(10\bar{2})}}/\text{nm}$ | 0.311 | 0.311 |
(013) ∠ (111)/(°) | 49.1 | 50.0 |
(111) ∠ $(10\bar{2})$./(°) | 79.2 | 79.4 |
$(10\bar{2})$.∠ (013)/(°) | 51.7 | 50.6 |
图3 两根相邻银纳米线之间的连接示意图[12]
Fig. 3 Schematic representation of a junction between two adjacent AgNWs[12] (a) As-deposited junction; (b) Local sintering; (c) Initiation of the deterioration of the junction; (d) SEM image of a AgNW junction after thermal load just before the failure point; (e-g) SEM images of bare AgNW electrodes (e) Before annealing and after annealing for (f) 200 ℃, 20 min and (g) 380 ℃, 20 min[14]
图4 (a)电流通过两根银纳米线网络结点的有限元模拟[22]; (b,c)方阻为12 Ω/□的银纳米线电极持续流过电流密度为17 mA/cm2的电流17 d后的SEM照片[21]; (d~f)银纳米线网络在焦耳热作用下的SEM照片[22]: (d)银纳米线网络局部断裂; (e)热点的扩大; (f)热点合并, 形成电不连续区域
Fig. 4 (a) Finite-element simulation of the current flow through a two AgNW junction[22]; (b, c) SEM images of a 12 □/sq AgNW electrode under a constant current density of 17 mA/cm2 for 17 d [21]; (d-f) SEM image of AgNW network under Joule heating[22]: (d) Local fracture of the AgNW network; (e) Expansion of hot spots; (f) Hot spots merge to form an electrically discontinuous region
图5 光照后银纳米线上或周围出现的大、小颗粒的形貌图[23]
Fig. 5 The morphology of the small nanodots and large particles emerged on/around silver nanowires after light irradiation[23] (a) The small nanodots on/around single AgNW; (b) The small nanodots on/around AgNWs with different diameters; (c) The small nanodots at the end of AgNW and also the large particle at the wire-wire junction with inset showing the high magnification image; (d) The large particle adjoined AgNWs
图6 双晶银纳米线在54 mA电流下的SEM照片[26]
Fig. 6 SEM images of a bi-crystalline AgNW under a current of 54 mA[26] (a) Prior electrical stressing; (b-e) The direction of vacancy movement when the current flows to the left; (f-i) The direction of vacancy movement when the current moves to the right; (k-n) Surface morphology SEM images of the AgNW network in different stages of degradation[27]: (k) Fresh sample; (l) Degradation with larger grain size; (m) The emergence of larger voids; (n) Complete breakdown
图7 针对银纳米线的失效形式所提出的具体解决措施
Fig. 7 Remedy strategy of silver nanowire degradation (a) A self-assembled organic 2-mercaptobenzimidazole (MBI) used as an inhibitor of AgNWs[28]; (b) ZnO-AgNW composite electrode prepared by AP-SALD[12]
[1] | SHANG Z, LI J, FAN C , et al . In situ study on surface roughening in radiation-resistant Ag nanowires. Nanotechnology, 2018,29(21):215708. |
[2] | BELLET D, LAGRANGE M, SANNICOLO T , et al. Transparent electrodes based on silver nanowire networks: from physical considerations towards device integration. Materials, 2017,10(6):570. |
[3] | SUN Y, GATES B, MAYERS B , et al. Crystalline silver nanowires by soft solution processing. Nano Lett., 2002,2(2):165-168. |
[4] | LEE J Y, CONNOR S T, CUI Y , et al. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett., 2008,8(2):689-692. |
[5] | LIANG G, YI M, HU H , et al. Coaxial-structured weavable and wearable electroluminescent fibers. Adv. Electron. Mater., 2017,3(12):1700401. |
[6] | SCHUETTE W M, BUHRO W E . Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano, 2013,7(5):3844-3853. |
[7] | CHEN C, ZHAO Y, WEI W , et al. Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics. J. Mater. Chem. C, 2017,5(9):2240-2246. |
[8] | VOLOE L, PETERSON P J . The atmospheric sulfidation of silver in a tubular corrosion reactor. Corros. Sci., 1989,29(10):1179-1196. |
[9] | FRANEY J P, KAMMLOTT G W, GRAEDEL T E . The corrosion of silver by atmospheric sulfurous gases. Corros. Sci., 1989,25(2):113-143. |
[10] | ELECHIGUERRA J L, LOPEZ L L, LIU C , et al. Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem. Mater., 2005,17(24):6042-6052. |
[11] | GRAEDEL T E, FRANEY J P, GUALTIERI G J , et al. On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS. Corros. Sci., 1985,25(12):1163-1180. |
[12] | KHAN A, NGUYEN V H, ROJAS D M , et al. Stability enhancement of ailver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces, 2018,10(22):19208-19217. |
[13] | ZHANG X, YAN X, CHEN J , et al. Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon, 2014,69:437-443. |
[14] | HWANG B, AN Y, LEE H , et al. Highly flexible and transparent Ag nanowire electrode encapsulated with ultra-thin Al2O3: thermal, ambient, and mechanical stabilities. Sci. Rep., 2017,7:41336. |
[15] | AHN Y, JEONG Y, LEE Y . Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide. ACS Appl. Mater. Interfaces, 2012,4(12):6410-6414. |
[16] | LAGRANGE M, LANGLEY D P, GIUSTI G , et al. Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing. Nanoscale, 2015,7(41):17410-17423. |
[17] | LAGRANGE M, SANNICOLO T, ROJAS D M , et al. Understanding the mechanisms leading to failure in metallic nanowire- based transparent heaters, and solution for stability enhancement. Nanotechnology, 2017,28(5):055709. |
[18] | KHALIGH H H, XU L, KHOSROPOUR A , et al. The Joule heating problem in silver nanowire transparent electrodes. Nanotechnology, 2017,28(42):425703. |
[19] | SANNICOLO T, CHARVIN N, FLANDIN L , et al. Electrical mapping of silver nanowire networks: a versatile tool for imaging network homogeneity and degradation dynamics during failure. ACS Nano, 2018,12(5):4648-4659. |
[20] | FANTANAS D, BRUNTON A, HENLEY S J , et al. Investigation of the mechanism for current induced network failure for spray deposited silver nanowires. Nanotechnology, 2018,29(46):465705. |
[21] | KHALIGH H H, GOLDTHORPE I A . Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res.Lett., 2013, 8(1):235. |
[22] | CHEN D, ZHAO F, TONG K , et al. Mitigation of electrical failure of silver nanowires under current flow and the application for long lifetime organic light-emitting diodes. Adv. Electron. Mater., 2016,2(8):1600167. |
[23] | WANG J, JIU J, ZHANG S , et al. The comprehensive effects of visible light irradiation on silver nanowire transparent electrode. Nanotechnology, 2018,29(43):435701. |
[24] | LEE G P, SHI Y, LAVOIE E , et al. Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano, 2013,7(7):5911-5921. |
[25] | GRILLET N, MANCHON D, COTTANCIN E , et al. Photo- oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. J. Phys. Chem. C, 2013,117(5):2274-2282. |
[26] | SINDERMANN S P, LATZ A, SPODDIG D , et al. Lattice degradation by moving voids during reversible electromigration. J. Appl. Phys., 2014,116(3):034502. |
[27] | CHEUK K W, PEI K, CHAN P K L . Degradation mechanism of a junction-free transparent silver network electrode. RSC Adv., 2016,6(77):73769-73775. |
[28] | LIU G S, XU Y, KONG Y , et al. Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl. Mater. Interfaces, 2018,10(43):37699-37708. |
[29] | DENG B, HSU P C, CHEN G , et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett., 2015,15(6):4206-4213. |
[30] | RAMASAMY P, SEO D M, KIM S H , et al. Effects of TiO2 shells on optical and thermal properties of silver nanowires. J. Mater. Chem., 2012,22(23):11651-11657. |
[31] | CHEN D, LIANG J, LIU C , et al. Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Adv. Funct. Mater., 2015,25(48):7512-7520. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||