[1] |
GOODENOUGH J B, KIM Y.Challenges for rechargeable Li batteries.Chem. Mater., 2010, 22(3): 587-603.
|
[2] |
DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid: a battery of choices.Science, 2011, 334(6058): 928-935.
|
[3] |
LI H, WANG Z, CHEN L, et al.Research on advanced materials for Li-ion batteries. Adv. Mater., 2009, 21(45): 4593-4607.
|
[4] |
TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414(6861): 359-367.
|
[5] |
WANG H B, ZHOU Y H, TAO Z L, et al.Research progress of silicon-based anodes for lithium-ion batteries.Chinese J. Power Sources, 2009, 33(11): 1029-1032.
|
[6] |
GUO B K, SHU J, WANG Z X, et al.Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries.Electrochem. Commun., 2008, 10(12): 1876-1878.
|
[7] |
SUN Q, ZHANG B, FU Z W.Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries.Appl. Surf. Sci., 2008, 254(13): 3774-3779.
|
[8] |
CHANG W S, PARK C M, KIM J H, et al.Quartz (SiO2): a new energy storage anode material for Li-ion batteries.Energy Environ. Sci., 2012, 5(5): 6895-6899.
|
[9] |
YU B C, HWA Y, KIM J H, et al.A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites.Electrochem. Acta, 2014, 117(4): 426-430.
|
[10] |
MA C L, MA C, WANG J Z, et al.Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes.Carbon, 2014, 72(3): 38-46.
|
[11] |
ZHOU X, YIN Y X, WAN L J, et al.Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries.Adv. Energy Mater., 2012, 2(9): 1086-1090.
|
[12] |
SI Q, HANAI K, ICHIKAWA T, et al.A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries.J. Power Sources, 2010, 195(6): 1720-1725.
|
[13] |
WANG L, DING C X, ZHANG L C, et al.A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries.J. Power Sources, 2010, 195(15): 5052-5056.
|
[14] |
WU H, ZHENG G, LIU N, et al.Engineering empty space between Si nanoparticles for lithium-ion battery anodes.Nano Lett., 2012, 12(2): 904-909.
|
[15] |
JOHNSON D C, MOSBY J M, RIHA S C, et al.Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties.J. Mater. Chem., 2010, 20(10): 1993-1998.
|
[16] |
LAÏK B, UNG D, CAILLARD A, et al. An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries.J. Solid State Electrochem., 2010, 14(10): 1835-1839.
|
[17] |
CHEN H, XIAO Y, WANG L, et al.Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries.J. Power Sources, 2011, 196(16): 6657-6662.
|
[18] |
HU L B, WU H, HONG S S, et al.Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.Chem. Commun., 2011, 47(1): 367-369.
|
[19] |
PARK M H, KIM M G, JOO J, et al.Silicon nanotube battery anodes.Nano Lett., 2009, 9(11): 3844-3847.
|
[20] |
LEE W J, PARK M H, WANG Y, et al.Nanoscale Si coating on the pore walls of SnO2 nanotube anode for Li rechargeable batteries.Chem. Commun., 2010, 46(4): 622-624.
|
[21] |
SONG T, XIA J L, LEE J H, et al.Arrays of sealed silicon nanotubes As anodes for lithium ion batteries.Nano Lett., 2010, 10(5): 1710-1716.
|
[22] |
YU Y, GU L, ZHU C, et al.Reversible storage of lithium in silver-coated three-dimensional macroporous silicon.Adv. Mater., 2010, 22(20): 2247-2250.
|
[23] |
YAO Y, MCDOWELL M T, RYU I, et al.Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.Nano Lett., 2011, 11(7): 2949-2954.
|
[24] |
CHEN D, MEI X, JI G, et al.Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles.Angew. Chem. Int. Ed. Engl., 2012, 51(10): 2409-2413.
|
[25] |
BAI X, WANG B, WANG H, et al.In situ synthesis of carbon fiber-supported SiOx as anode materials for lithium ion batteries.RSC Adv., 2016, 6(39): 32798-32803.
|
[26] |
LEE B S, SON S B, PARK K M, et al.Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode.J. Power Sources, 2012, 206(2): 267-273.
|
[27] |
LIU X H, ZHANG J, SI W P, et al.Sandwich nano architecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life.ACS Nano, 2015, 9(2): 1198-1205.
|
[28] |
ZHAO X, HAYNER C M, KUNG M C, et al.In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries.Adv. Energy Mater., 2011, 1(6): 1079-1084.
|
[29] |
MAGASINSKI A, DIXON P, HERZBERG B, et al.High- performance lithium-ion anodes using a hierarchical bottom-up approach.Nature Mater., 2010, 9(4): 353-358.
|
[30] |
BAI X J, YU Y Y, KUNG H H, et al.Si@SiOx/graphene hydrogel composite anode for lithium-ion battery.J. Power Sources, 2016, 306: 42-48.
|
[31] |
ZHANG S, SHAO Y Y, LIAO H G, et al.Polyelectrolyte-induced reduction of exfoliated graphite xxide: a facile route to synthesis of soluble graphene nanosheets.ACS Nano, 2011, 5(3): 1785-1791.
|
[32] |
ZHANG J, JIANG J, ZHAO X S.Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene Sheets.J. Phys. Chem. C, 2011, 115(14): 6448-6454.
|
[33] |
ZHU Y C, ZHOU Y H, YU L Y, et al.A highly stable and active Pd catalyst on monolithic cordierite with graphene coating assisted by PDDA.RSC Adv., 2014, 4(19): 9480-9483.
|
[34] |
ZHANG H J, GAI P B, CHENG R, et al.Self-assembly synthesis of a hierarchical structure using hollow nitrogen-doped carbon spheres as spacers to separate the reduced graphene oxide for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid.Anal. Methods, 2013, 5(14): 3591-3600.
|
[35] |
WANG D W, MIN Y G, YU Y H, et al.A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors.J. Colloid and Interf. Sci., 2014, 417(3): 270-277.
|