无机材料学报 ›› 2017, Vol. 32 ›› Issue (5): 459-468.DOI: 10.15541/jim20160452 CSTR: 32189.14.10.15541/jim20160452
田晓冬1, 2, 李 肖1, 2, 杨 桃1, 2, 宋 燕1, 刘占军1, 郭全贵1
收稿日期:
2016-08-08
修回日期:
2016-09-19
出版日期:
2017-05-20
网络出版日期:
2017-05-02
作者简介:
田晓冬(1988–), 男, 博士研究生. E-mail: tianxiaodong0124@163.com
基金资助:
TIAN Xiao-Dong1, 2, LI Xiao1, 2, YANG Tao1, 2, SONG Yan1, LIU Zhan-Jun1, GUO Quan-Gui1
Received:
2016-08-08
Revised:
2016-09-19
Published:
2017-05-20
Online:
2017-05-02
About author:
TIAN Xiao-Dong. E-mail: tianxiaodong0124@163.com
摘要:
作为一种介于传统静电电容器和电池之间的新型储能器件, 超级电容器的整体性能受限于电极材料。研究发现, 赝电容材料拥有数十倍于碳基材料的比容量。而双金属氧化物作为一种新型赝电容材料, 因其多重氧化态、多金属离子特性和高理论容量, 在电化学储能领域备受关注。本工作系统介绍了双金属氧化物及其复合材料的合成及性质, 对双金属氧化物及其复合材料在超级电容器电极材料方面的应用进行了简要概述, 并展望了其发展前景和重点发展方向, 以及需要解决的科学问题。
中图分类号:
田晓冬, 李 肖, 杨 桃, 宋 燕, 刘占军, 郭全贵. 双金属氧化物和复合材料的合成及其在超级电容器中的应用进展[J]. 无机材料学报, 2017, 32(5): 459-468.
TIAN Xiao-Dong, LI Xiao, YANG Tao, SONG Yan, LIU Zhan-Jun, GUO Quan-Gui. Recent Advances on Synthesis and Supercapacitor Application of Binary Metal Oxide[J]. Journal of Inorganic Materials, 2017, 32(5): 459-468.
Materials | Parameters | Specific capacitance | Ref. |
---|---|---|---|
NiMoO4 nanospheres | H2O, 140℃, 12 h | 974.4 F/g (1 A/g) | [27] |
NiMoO4 nanorods | Ethanol-H2O, 140℃, 12 h | 944.8 F/g (1 A/g) | |
MnMoO4 nanosheets on Ni foam | H2O, 150℃, 8 h | 1271 F/g (5 mV/s) | [28] |
CoMoO4 nanoplate arrays on Ni foam | H2O, 180℃, 12 h | 1.26 F/cm2 (4 mA/cm2) | [29] |
NiMoO4 nanowire arrays on carbon cloth | H2O, 140℃, 8 h | 414.7 F/g (0.25 A/g) | [30] |
表1 使用溶剂热/水热方法制备BTMOs的参数及其相关性能
Table 1 Parameters and performance of BTMOs synthesized by solvothermal method
Materials | Parameters | Specific capacitance | Ref. |
---|---|---|---|
NiMoO4 nanospheres | H2O, 140℃, 12 h | 974.4 F/g (1 A/g) | [27] |
NiMoO4 nanorods | Ethanol-H2O, 140℃, 12 h | 944.8 F/g (1 A/g) | |
MnMoO4 nanosheets on Ni foam | H2O, 150℃, 8 h | 1271 F/g (5 mV/s) | [28] |
CoMoO4 nanoplate arrays on Ni foam | H2O, 180℃, 12 h | 1.26 F/cm2 (4 mA/cm2) | [29] |
NiMoO4 nanowire arrays on carbon cloth | H2O, 140℃, 8 h | 414.7 F/g (0.25 A/g) | [30] |
图1 (a)在碳布上水热沉积NiMoO4纳米线阵列示意图, 140℃水热不同时间SEM照片(b~d)和180℃水热沉积SEM照片(e)[30]
Fig. 1 (a) Schematic illustration of the formation processes of the NiMoO4 NW arrays on carbon cloth via hydrothermal; SEM images of the prepared NiMoO4 NW arrays on carbon cloth at 140℃ for different hours (b-d) and SEM inage of NiMoO4 NW arrays at 180℃(e) [30]
图3 NiCo2O4中空亚微米球的TEM (a~c)和HRTEM(d)以及相应的SAED照片(d插图)[40]
Fig. 3 TEM images (a-c), HRTEM image (d) and corresponding SAED pattern (inset in (d)) of the mesoporous NiCo2O4 hollow submicrospheres[40]
图4 NiMoO4·xH2O、CoMoO4和 CoMoO4-NiMoO4·xH2O在20 mV/s扫描速度下的CV曲线(a)以及比容量随电流密度的变化曲线(b)[42]
Fig. 4 (a) CV curves of NiMoO4·xH2O, CoMoO4, and CoMoO4-NiMoO4·xH2O bundles at a scan rate of 20 mV/s; (b) Specific capacitances of NiMoO4·xH2O, CoMoO4, and CoMoO4-NiMoO4·xH2O bundles at controlled current densities[42]
图5 (a)不同结构双金属过渡金属氧化物形成示意图, (b)tube-in-tube 结构NiCo2O4不同扫速下CV曲线图, (c)不同结构样品比容量随电流密度的变化曲线[47]
Fig. 5 (a) Schematic illustration for the formation process of the ternary TMOs with complex 1D nanostructures including tube-in-tube, nanotube, and solid 1D nanostructures; (b) CV curves of NiCo2O4 tube-in-tube nanostructures at various scan rates ranging from 1-20 mV•s-1; (c) the specific capacitance at various current density of NiCo2O4 tube-in-tube, nanotube, and 1D solid nanostructures[47]
图7 (a)卷绕电极和(b)纤维状全固态超级电容器制备示意图; 不同弯曲状态纤维状电容器的(c)光学照片、(d) CV曲线以及(e, f) 500次循环的容量保持率曲线[48]
Fig. 7 Schematic diagram showing (a) the fabrication of the winding electrode and (b) the fabrication process of the fiber solid-state NCO SCs; (c) Photos of fiber SCs in straight and bending states; (d) CV curves at 80 mV/s in straight and bending states, respectively. (e, f) The capacitance stability of fiber SCs in straight and bending states for 500 cycles, respectively[48]
Materials | Method | C/(F•g-1) | Rate capability | Cycle performance | Ref. |
---|---|---|---|---|---|
NiCo2O4 nanorobs on carbon nanofibers | Coprecipitation | 1026 (1 A/g) | 48.7% (20/1) | 91.5% (2 A/g, 2000) | [26] |
NiCo2O4 nanosheets on carbon nanofibers | 1002 (1 A/g) | 51.9% (20/1) | 96.4% (2 A/g, 2400) | ||
NiCo2O4 microspheres | Microwave assisted synthesis | 774 (2 mV/s) | 52.3% (100/2) | - | [32] |
Ordered mesoporous NiCo2O4 | Hard template | 739 (2.86 A/g) | 55.2% (28.6/2.86) | 95%(28.6 A/g, 2500) | [38] |
NiCo2O4 hollow submicropheres | Soft template | 987 (1 A/g) | 62.8% (50/1) | No capacity loss (5 A/g, 5000) | [40] |
NiCo2O4 nanowires | Microemulsion | 1481 (0.5 A/g) | 42.2% (8/0.5) | 91.4% (2 A/g, 2000) | [44] |
NiCo2O4 tube-in-tube structure | Electrospinning | 1756 (1 A/g) | 83.0% (20/1) | 92.4% (5 A/g, 5000) | [47] |
Flower like NiCo2O4/3D graphene foam | Electrodeposition | 1402 (1 A/g) | 77.0% (20/1) | 76.6% (5 A/g, 5000) | [48] |
NiCo2O4@Ppy nanowire arrays on carbon textiles | Hydrothermal | 2244 (1 A/g) | 60.5% (30/1) | 82.9% (3 A/g, 10000) | [54] |
Si/NiCo2O4 heterostructure | Hydrothermal | 1972 (2 A/g) | 54.4% (10/2) | 78% (10 A/g, 2000) | [55] |
表2 不同制备方法得到的NiCo2O4电化学性能的比较
Table 2 Comparison of the electrochemical performance of NiCo2O4 obtained by different methods
Materials | Method | C/(F•g-1) | Rate capability | Cycle performance | Ref. |
---|---|---|---|---|---|
NiCo2O4 nanorobs on carbon nanofibers | Coprecipitation | 1026 (1 A/g) | 48.7% (20/1) | 91.5% (2 A/g, 2000) | [26] |
NiCo2O4 nanosheets on carbon nanofibers | 1002 (1 A/g) | 51.9% (20/1) | 96.4% (2 A/g, 2400) | ||
NiCo2O4 microspheres | Microwave assisted synthesis | 774 (2 mV/s) | 52.3% (100/2) | - | [32] |
Ordered mesoporous NiCo2O4 | Hard template | 739 (2.86 A/g) | 55.2% (28.6/2.86) | 95%(28.6 A/g, 2500) | [38] |
NiCo2O4 hollow submicropheres | Soft template | 987 (1 A/g) | 62.8% (50/1) | No capacity loss (5 A/g, 5000) | [40] |
NiCo2O4 nanowires | Microemulsion | 1481 (0.5 A/g) | 42.2% (8/0.5) | 91.4% (2 A/g, 2000) | [44] |
NiCo2O4 tube-in-tube structure | Electrospinning | 1756 (1 A/g) | 83.0% (20/1) | 92.4% (5 A/g, 5000) | [47] |
Flower like NiCo2O4/3D graphene foam | Electrodeposition | 1402 (1 A/g) | 77.0% (20/1) | 76.6% (5 A/g, 5000) | [48] |
NiCo2O4@Ppy nanowire arrays on carbon textiles | Hydrothermal | 2244 (1 A/g) | 60.5% (30/1) | 82.9% (3 A/g, 10000) | [54] |
Si/NiCo2O4 heterostructure | Hydrothermal | 1972 (2 A/g) | 54.4% (10/2) | 78% (10 A/g, 2000) | [55] |
[1] | MANTHIRAM A, MURUGAN A V, SARKAR A, et al.Nanostructured electrode materials for electrochemical energy storage and conversion.Energy Environ. Sci., 2008, 1(6): 621-638. |
[2] | YAN J, WANG Q, WEI T, et al.Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities.Adv. Energy Mater., 2014, DOI: 10.1002/aenm.201300816. |
[3] | WANG Y, XIA Y.Recent progress in supercapacitors: from materials design to system construction.Adv. Mater., 2013, 25(37): 5336-5342. |
[4] | GONZ LEZ A, GOIKOLEA E, BARRENA J A, et al.Review on supercapacitors: Technologies and materials.Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. |
[5] | WANG Q, YAN J, FAN Z.Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities.Energy Environ. Sci., 2016, 9(3): 729-762. |
[6] | ZHAI Y, DOU Y, ZHAO D, et al.Carbon materials for chemical capacitive energy storage.Adv. Mater., 2011, 23(42): 4828-4850. |
[7] | DENG X, ZHAO B, ZHU L, et al.Molten salt synthesis of nitrogen- doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors.Carbon, 2015, 93: 48-58. |
[8] | WANG K, WU H, MENG Y, et al.Conducting polymer nanowire arrays for high performance supercapacitors.Small, 2014, 10(1): 14-31. |
[9] | WANG Q, O’HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets.Chem. Rev., 2012, 112(7): 4124-4155. |
[10] | YU M, ZENG Y, HAN Y, et al.Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super- long cyclic durability of 100 000 cycles.Adv Funct Mater, 2015, 25(23): 3534-3540. |
[11] | RUI X, TAN H, YAN Q.Nanostructured metal sulfides for energy storage.Nanoscale, 2014, 6(17): 9889-9924. |
[12] | BALOGUN M S, QIU W, WANG W, et al.Recent advances in metal nitrides as high-performance electrode materials for energy storage devices.J. Mater. Chem. A, 2015, 3(4): 1364-1387. |
[13] | SUN M, LIU H, QU J, et al.Earth-rich transition metal phosphide for energy conversion and storage.Adv. Energy Mater., 2016, DOI: 10.1002/aenm.201600087. |
[14] | ZHI M, XIANG C, LI J, et al.Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.Nanoscale, 2013, 5(1): 72-88. |
[15] | DUBAL D P, GOMEZ-ROMERO P, SANKAPAL B R, et al.Nickel cobaltite as an emerging material for supercapacitors: An overview.Nano Energy, 2015, 11: 377-399. |
[16] | SHOWN I, GANGULY A, CHEN L C, et al.Conducting polymer-based flexible supercapacitor.Energ. Sci. Eng., 2014, 3(1): 2-26. |
[17] | WANG G, ZHANG L, ZHANG J.A review of electrode materials for electrochemical supercapacitors.Chem. Soc. Rev., 2012, 41(2): 797-828. |
[18] | KIM S Y, JEONG H M, KWON J H, et al.Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life.Energy Environ. Sci., 2015, 8(1): 188-194. |
[19] | ABOUALI S, AKBARI GARAKANI M, ZHANG B, et al.Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors.ACS Appl. Mater. Interfaces, 2015, 7(24): 13503-13511. |
[20] | SARAVANAKUMAR B, PURUSHOTHAMAN K K, MURALIDHARAN G.Interconnected V2O5 nanoporous network for high-performance supercapacitors.ACS Appl. Mater. Interfaces, 2012, 4(9): 4484-4490. |
[21] | GHOSH A, RA E J, JIN M, et al.High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon- nanofiber paper.Adv. Funct. Mater., 2011, 21(13): 2541-2547. |
[22] | MENDOZA-S NCHEZ B, GRANT P S. Charge storage properties of a α-MoO3/carboxyl-functionalized single-walled carbon nanotube composite electrode in a Li ion electrolyte.Electrochim Acta, 2013, 98: 294-302. |
[23] | FAN Z, YAN J, WEI T, et al.Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density.Adv. Funct. Mater., 2011, 21(12): 2366-2375. |
[24] | CHAUDHARI N K, CHAUDHARI S, YU J S.Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors.ChemSusChem, 2014, 7(11): 3102-3111. |
[25] | PENG S, LI L, WU H B, et al.Controlled growth of nimoo4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors.Adv. Energy Mater., 2015, DOI: 10.1002/aenm.201401172. |
[26] | ZHANG G, LOU X W.Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors.Sci. Rep., 2013, 3: 1470. |
[27] | CAI D, WANG D, LIU B, et al.Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications.ACS Appl. Mater. Interfaces, 2013, 5(24): 12905-12910. |
[28] | MU X, ZHANG Y, WANG H, et al.A high energy density asymmetric supercapacitor from ultrathin manganese molybdate nanosheets.Electrochim Acta, 2016, 211: 217-224. |
[29] | GUO D, ZHANG H, YU X, et al.Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors.J. Mater. Chem. A, 2013, 1(24): 7247-7254. |
[30] | WANG C, XI Y, HU C, et al.β-NiMoO4 nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitor.RSC Adv., 2015, 5: 107098-107104. |
[31] | WAN H, JIANG J, JI X, et al.Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors.Mater. Lett., 2013, 108: 164-167. |
[32] | KHALID S, CAO C, WANG L, et al.Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance.Sci. Rep., 2016, 6: 22699. |
[33] | DU J, ZHOU G, ZHANG H, et al.Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors.ACS Appl. Mater. Interfaces, 2013, 5(15): 7405-7409. |
[34] | WU J, GUO P, MI R, et al.Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors.J. Mater. Chem. A, 2015, 3(29): 15331-15338. |
[35] | XIAO K, XIA L, LIU G, et al.Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage.J. Mater. Chem. A, 2015, 3(11): 6128-6135. |
[36] | KONG L B, LU C, LIU M C, et al.Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4.J. Solid State Electrochem., 2013, 17(5): 1463-1471. |
[37] | HSU C T, HU C C.Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors.J. Power Sources, 2013, 242: 662-671. |
[38] | LU Q, CHEN Y, LI W, et al.Ordered mesoporous nickel cobaltite spinel with ultra-high supercapacitance.J. Mater. Chem. A, 2013, 1(6): 2331-2336. |
[39] | YUAN C, LI J, HOU L, et al.Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors.RSC Adv., 2013, 3(40): 18573-18578. |
[40] | ZHU Y, WANG J, WU Z, et al.An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances.J. Power Sources, 2015, 287: 307-315. |
[41] | LIU M C, KANG L, KONG L B, et al.Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors.RSC Adv., 2013, 3(18): 6472-6478. |
[42] | LIU M C, KONG L B, LU C, et al.Design and synthesis of CoMoO4-NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors.J. Mater. Chem. A, 2013, 1(4): 1380-1387. |
[43] | HAETGE J, DJERDJ I, BREZESINSKI T.Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries.Chem. Commun., 2012, 48(53): 6726-6728. |
[44] | AN C, WANG Y, HUANG Y, et al.Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique.Nano Energy, 2014, 10: 125-134. |
[45] | LONG C, ZHENG M, XIAO Y, et al.Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors.ACS Appl. Mater. Interfaces, 2015, 7(44): 24419-24429. |
[46] | CAI D, LIU B, WANG D, et al.Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors.Electrochim. Acta, 2014, 115: 358-363. |
[47] | PENG S, LI L, HU Y, et al.Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications.ACS Nano, 2015, 9(2): 1945-1954. |
[48] | ZHANG C, KUILA T, KIM N H, et al.Facile preparation of flower- like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes.Carbon, 2015, 89: 328-339. |
[49] | ZHOU J, HUANG Y, CAO X, et al.Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors.Nanoscale, 2015, 7(16): 7035-7039. |
[50] | WANG Q, WANG X, XU J, et al.Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes.Nano Energy, 2014, 8: 44-51. |
[51] | WANG X, YAN C, SUMBOJA A, et al.High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor.Nano Energy, 2014, 3: 119-126. |
[52] | AI Y, GENG X, LOU Z, et al.Rational synthesis of branched CoMoO4@CoNiO2 core/shell nanowire arrays for all-solid-state supercapacitors with improved performance.ACS Appl. Mater. Interfaces, 2015, 7(43): 24204-24211. |
[53] | CAI D, WANG D, LIU B, et al.Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage.ACS Appl Mater Interfaces, 2014, 6(7): 5050-5055. |
[54] | KONG D, REN W, CHENG C, et al.Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor.ACS Appl Mater Interfaces, 2015, 7(38): 21334-21346. |
[55] | MA M, GUO J, ZHANG Y, et al.Si/NiCo2O4 heterostructures electrodes with enhanced performance for supercapacitor.RSC Adv., 2015, 5(77): 62813-62818. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 何思哲, 王俊舟, 张勇, 费嘉维, 吴爱民, 陈意峰, 李强, 周晟, 黄昊. 高频低损耗的Fe/亚微米FeNi软磁复合材料[J]. 无机材料学报, 2024, 39(8): 871-878. |
[7] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[10] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[11] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[12] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[13] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[14] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[15] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||