无机材料学报 ›› 2017, Vol. 32 ›› Issue (5): 449-458.DOI: 10.15541/jim20160380 CSTR: 32189.14.10.15541/jim20160380
• • 下一篇
何 飞1,2, 李 亚1,2, 骆 金1,2, 方旻翰1,2, 赫晓东1,2
收稿日期:
2016-06-16
修回日期:
2016-08-30
出版日期:
2017-05-20
网络出版日期:
2017-05-02
作者简介:
何 飞(1978–), 男, 副教授. E-mail: hefei@hit.edu.cn
基金资助:
HE Fei1,2, LI Ya1,2, LUO Jin1,2, FANG Min-Han1,2, HE Xiao-Dong1,2
Received:
2016-06-16
Revised:
2016-08-30
Published:
2017-05-20
Online:
2017-05-02
About author:
HE Fei. E-mail: hefei@hit.edu.cn
摘要:
具有气凝胶结构特征的C/SiO2和C/SiC复合材料因其多样的结构存在形式和多孔、轻质、耐高温等特性, 在高温隔热、吸附、催化、储氢、光电等多种领域具有广泛的应用前景和研究价值。依据硅源与碳源的不同引入方式, 本文综述了采用共聚法、浸入法和聚合物先驱体热解法制备的具有气凝胶结构特征的C/SiO2和C/SiC复合材料的研究现状。借助碳材料与SiO2两者间的相对存在形式, 探讨了这三种工艺方法制备C/SiO2和C/SiC复合材料的工艺特点, 分析了材料所呈现的组织结构特征、合成机理和性能特点, 并对其潜在的应用前景进行了展望。硅与碳之间多样的复合方式使C/SiO2和C/SiC复合材料呈现出多样的材料特征和特性, 为相关研究开辟了新的方向。
中图分类号:
何 飞, 李 亚, 骆 金, 方旻翰, 赫晓东. 具有气凝胶结构特征的C/SiO2和C/SiC复合材料研究进展[J]. 无机材料学报, 2017, 32(5): 449-458.
HE Fei, LI Ya, LUO Jin, FANG Min-Han, HE Xiao-Dong. Development of SiO2/C and SiC/C Composites Featuring Aerogel Structures[J]. Journal of Inorganic Materials, 2017, 32(5): 449-458.
Precursors | Temperature/ ℃ | Density/ (g•cm-3) | Ratio of porosity/ % | specific surface area/(m2•g-1) | Pore volume/ (cm3•g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
PhTMS+TMOS (molar ratio=1:4)[ | as-prepared 1000 | 0.48 0.58 | - | 987 581 | - | 2.8 2.5 |
TEOS+PDMS[ | 1200 | 0.30 | - | 198.04 | 0.684 | 5.6 |
MDMS+TEOS (molar ratio=1:1)[ | as-prepared 800 | - | - | 425.5 275.0 | 1.87 - | 17.59 - |
BTEE[ | as-prepared 1000 | - | - | 1022 69 | 0.53 0.02 | - |
BTME[ | as-prepared 1000 | - | - | 867 735 | 0.74 0.36 | - |
TEOS+TBOT+PDMS[ | as-prepared 400 600 800 1000 | - | - | 1.1 300.1 515.2 283.1 1.4 | 1.7 2.8 2.7 1.7 1.1 | - |
BTEBP[ | 300 1300 1400 1500 | 0.264 0.260 0.265 0.266 | 83 91 91 91 | 1190 1050 818 796 | 0.916 0.802 0.703 0.639 | - |
MTMS+GPYMS[ | as-prepared 1000 as-prepared 1000 | 0.31 0.61 0.18 0.49 | 78 - 87 - | 464 207 618 150 | 1.24 0.98 1.07 0.52 | 11 18 7 14 |
PHMS[ | as-prepared 1000 | - | - | 227 180 | 1.37 1.09 | 52 24 |
MTES[ | as-prepared 1000 | - | - | 727 168 | 1.47 0.80 | 8.0 18.5 |
PDMS+TrEOS[ | as-prepared 1100 | - | 59-69 1.6 | 405-583 109 | - | 3.2-5.0 <2 |
MDES+TrEOS[ | as-prepared 1000 | - | 88±2 50±1 | 0.45±0.02 0.31±0.02 | - |
表1 不同硅氧烷先驱体制备的SiCO结构参数比较
Table 1 Porous parameters of SiCO prepared by different siloxane precursors
Precursors | Temperature/ ℃ | Density/ (g•cm-3) | Ratio of porosity/ % | specific surface area/(m2•g-1) | Pore volume/ (cm3•g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
PhTMS+TMOS (molar ratio=1:4)[ | as-prepared 1000 | 0.48 0.58 | - | 987 581 | - | 2.8 2.5 |
TEOS+PDMS[ | 1200 | 0.30 | - | 198.04 | 0.684 | 5.6 |
MDMS+TEOS (molar ratio=1:1)[ | as-prepared 800 | - | - | 425.5 275.0 | 1.87 - | 17.59 - |
BTEE[ | as-prepared 1000 | - | - | 1022 69 | 0.53 0.02 | - |
BTME[ | as-prepared 1000 | - | - | 867 735 | 0.74 0.36 | - |
TEOS+TBOT+PDMS[ | as-prepared 400 600 800 1000 | - | - | 1.1 300.1 515.2 283.1 1.4 | 1.7 2.8 2.7 1.7 1.1 | - |
BTEBP[ | 300 1300 1400 1500 | 0.264 0.260 0.265 0.266 | 83 91 91 91 | 1190 1050 818 796 | 0.916 0.802 0.703 0.639 | - |
MTMS+GPYMS[ | as-prepared 1000 as-prepared 1000 | 0.31 0.61 0.18 0.49 | 78 - 87 - | 464 207 618 150 | 1.24 0.98 1.07 0.52 | 11 18 7 14 |
PHMS[ | as-prepared 1000 | - | - | 227 180 | 1.37 1.09 | 52 24 |
MTES[ | as-prepared 1000 | - | - | 727 168 | 1.47 0.80 | 8.0 18.5 |
PDMS+TrEOS[ | as-prepared 1100 | - | 59-69 1.6 | 405-583 109 | - | 3.2-5.0 <2 |
MDES+TrEOS[ | as-prepared 1000 | - | 88±2 50±1 | 0.45±0.02 0.31±0.02 | - |
图5 多孔SiCO陶瓷的几何结构和热传递分析模型[66]
Fig. 5 Geometric structure and heat transfer analysis of macro-porous SiCO ceramics[66] (a) Cubic array of intersecting spherical structure; (b) Heat transfer in two contact spherical particles; (c) Heat transfer in sphere-gas-sphere structure
Property | Value | Comments | Values for vitreous silica |
---|---|---|---|
Density/(g•cm-3) | 2.35 | 2.20 | |
Coefficient of the thermal expansion/K-1 | 3.14×10-6 | Average of many samples on cooling between 1000℃ and 100℃; hot-pressed | 0.5 |
Vickers hardness/(kg•mm-2) | 855 704 | 200 g load 1000 g load | 600-700 |
Critical stress intensity factor /(MPa•m1/2) | 1.8 | 1000 g load | 1 |
Fracture strength/MPa | 153±20 | 3-point bending of 0.74 mm diameter fibers | |
385±227 | 3-point bending of bars | ||
Young's elastic modulus/GPa | 97.9 | 70 | |
Index of refraction | 1.58 | At 0.5893 μm | 1.46 |
Glass transition/℃ | 1350 | Viscosity of 1013 P | 1190 |
Dielectric constant | 4.4 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 4 |
Dielectric loss tangent | 0.1 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 10-4 |
Electrical conductivity /(Ω·cm) -1 | 4×10-13 | 25℃, pyrolyzed to 1100℃ | ~10-22 |
表2 SiCO和玻璃态SiO2之间的物理特性
Table 2 Properties of SiCO glass and vitreous silica
Property | Value | Comments | Values for vitreous silica |
---|---|---|---|
Density/(g•cm-3) | 2.35 | 2.20 | |
Coefficient of the thermal expansion/K-1 | 3.14×10-6 | Average of many samples on cooling between 1000℃ and 100℃; hot-pressed | 0.5 |
Vickers hardness/(kg•mm-2) | 855 704 | 200 g load 1000 g load | 600-700 |
Critical stress intensity factor /(MPa•m1/2) | 1.8 | 1000 g load | 1 |
Fracture strength/MPa | 153±20 | 3-point bending of 0.74 mm diameter fibers | |
385±227 | 3-point bending of bars | ||
Young's elastic modulus/GPa | 97.9 | 70 | |
Index of refraction | 1.58 | At 0.5893 μm | 1.46 |
Glass transition/℃ | 1350 | Viscosity of 1013 P | 1190 |
Dielectric constant | 4.4 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 4 |
Dielectric loss tangent | 0.1 | 25℃, 10 to 107 Hz pyrolyzed to 1100℃ | 10-4 |
Electrical conductivity /(Ω·cm) -1 | 4×10-13 | 25℃, pyrolyzed to 1100℃ | ~10-22 |
[1] | WHITE R J, BRUN N, BUDARIN V L, et al.Always look on the “light” side of life: sustainable carbon aerogels. ChemSusChem, 2014, 7(3): 670-689. |
[2] | HUSING N, SCHUBERT U.Aerogels-airy materials: chemistry, structure, and properties.Angewandte Chemie International Edition, 1998, 37(1/2): 22-45. |
[3] | PIERRE A C, PAJONK G M.Chemistry of aerogels and their applications. Chemical Reviews, 2002, 102(11): 4243-4266. |
[4] | RAO A V, BHAGAT S D, HIRASHIMA H, et al.Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. Journal of Colloid and Interface Science, 2006, 300(1): 279-285. |
[5] | RANDALL J P, MEADOR M A B, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications.ACS Applied Materials & Interfaces, 2011, 3(3): 613-626. |
[6] | ANTONIETTI M, FECHLERN, FELLINGER T P. Carbon aerogels and monoliths: control of porosity and nanoarchitecture via Sol-Gel routes.Chemistry of Materials, 2013, 26(1): 196-210. |
[7] | MALEKI H, DURAES L, PORTUGAL A.An overview on silica aerogels synthesis and different mechanical reinforcing strategies.Journal of Non-Crystalline Solids, 2014, 385(2): 55-74. |
[8] | WANG Z, WANG D, QIAN Z, et al.Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.ACS Applied Materials & Interfaces, 2015, 7(3): 2016-2024. |
[9] | LEE D, STEVENS P C, ZENG S Q, et al.Thermal characterization of carbon-opacified silica aerogels.Journal of Non-Crystalline Solids, 1995, 186(2): 285-290. |
[10] | ZHOU X F, CUI S, LIU Y, et al.Adsorption capacity of hydrophobic SiO2 aerogel/activated carbon composite materials for TNT.Science China Technological Sciences, 2013, 56(7): 1767-1772. |
[11] | KONG Y, ZHONG Y, SHEN X, et al.Synthesis and characterization of monolithic carbon/silicon carbide composite aerogels.Journal of Porous Materials, 2013, 20(4): 845-849. |
[12] | KONG Y, SHEN X, CUI S, et al.Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation.Ceramics International, 2014, 40(6): 8265-8271. |
[13] | HASEGAWA G, KANAMORI K, NAKANISHI K, et al.A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels.Chemistry of Materials, 2010, 22(8): 2541-2547. |
[14] | ERMAKOVA M A, ERMAKOV D Y, KUVSHINOV G G, et al.Synthesis of high surface area silica gels using porous carbon matrices.Journal of Porous Materials, 2000, 7(4): 435-441. |
[15] | YE L, JI Z H, HAN W J, et al.Synthesis and characterization of silica/carbon composite aerogels.Journal of the American Ceramic Society, 2010, 93(4): 1156-1163. |
[16] | SCHAEFER D W, PEKALA R, BEAUCAGE G.Origin of porosity in resorcinol-formaldehyde aerogels.Journal of Non-Crystalline Solids, 1995, 186(2): 159-167. |
[17] | TAMON H, KITAMURA T, OKAZAKI M.Preparation of silica aerogel from TEOS.Journal of Colloid and Interface Science, 1998, 197(2): 353-359. |
[18] | DU A, ZHOU B, ZHANG Z, et al.A special material or a new state of matter: a review and reconsideration of the aerogel.Materials, 2013, 6(3): 941-968. |
[19] | AGUADO-SERRANO J, ROJAS-CERVANTES M L, LOPEZ- PEINADO A J, et al. Silica/C composites prepared by the Sol-Gel method. Influence of the synthesis parameters on textural characteristics.Microporous and Mesoporous Materials, 2004, 74(74): 111-119. |
[20] | LI X, CHEN X, SONG H.Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol-formaldehyde/SiO2 hybrid aerogels.Journal of Materials Science, 2009, 44(17): 4661-4667. |
[21] | XU H, ZHANG H, HUANG Y, et al.Porous carbon/silica composite monoliths derived from resorcinol-formaldehyde/TEOS.Journal of Non-Crystalline Solids, 2010, 356(20/21/22): 971-976. |
[22] | CHEN K, BAO Z, DU A, et al.One-pot synthesis, characterization and properties of acid-catalyzed resorcinol/formaldehyde cross- linked silica aerogels and their conversion to hierarchical porous carbon monoliths.Journal of Sol-Gel Science and Technology, 2012, 62(3): 294-303. |
[23] | CHEN K, BAO Z, DU A, et al.Synthesis of resorcinol-formaldehyde/ silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide.Microporous and Mesoporous Materials, 2012, 149(1): 16-24. |
[24] | KONG Y, ZHONG Y, SHEN X, et al.Facile synthesis of resorcinol-formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels.Journal of Non-Crystalline Solids, 2012, 358(23): 3150-3155. |
[25] | KONG Y, ZHONG Y, SHEN X, et al.Synthesis of monolithic mesoporous silicon carbide from resorcinol-formaldehyde/silica composites.Materials Letters, 2013, 99(20): 108-110. |
[26] | KONG Y, ZHONG Y, SHEN X, et al.Effect of silica sources on nanostructures of resorcinol-formaldehyde/silica and carbon/silicon carbide composite aerogels.Microporous and Mesoporous Materials, 2014, 197(10): 77-82. |
[27] | ZHMUD B V, SONNEFELD J.Aminopolysiloxane gels: production and properties.Journal of Non-crystalline Solids, 1996, 195(1/2): 16-27. |
[28] | YAO J, WANG H, ZHANG X, et al.Role of pores in the carbothermal reduction of carbon-silica nanocomposites into silicon carbide nanostructures.The Journal of Physical Chemistry C, 2007, 111(2): 636-641. |
[29] | KIM H J, KIM J H, KIM W I, et al.Nanoporous phloroglucinol- formaldehyde carbon aerogels for electrochemical use.Korean Journal of Chemical Engineering, 2005, 22(22): 740-744. |
[30] | SONG L, FENG D, LEE H J, et al.Stabilizing surfactant templated cylindrical mesopores in polymer and carbon films through composite formation with silica reinforcement.The Journal of Physical Chemistry C, 2010, 114(21): 9618-9626. |
[31] | MEECHOONUCK M, VAS-UMNUAY P, PAVARAJAM V.Synthesis of porous silicon nitride using silica/carbon composite derived from phenol-resorcinol-formaldehyde gel.Ceramics International, 2016, 42(9): 10879-10885. |
[32] | ZHENG Y, ZHENG Y, LI Z, et al.Preparations of C/SiC composites and their use as supports for Ru catalyst in ammonia synthesis.Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 79-83. |
[33] | RAMAN V, BAHL O P, DHAWAN U.Synthesis of silicon carbide through the sol-gel process from different precursors.Journal of Materials Science, 1995, 30(10): 2686-2693. |
[34] | LI X K, LIU L, ZHANG Y X, et al.Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels.Carbon, 2001, 39(2): 159-165. |
[35] | PREISS H, BERGER L M, BRAUN M.Formation of black glasses and silicon carbide from binary carbonaceous/silica hydrogels.Carbon, 1995, 33(33): 1739-1746. |
[36] | SERAJI M M, GHAFOORIAN N S, BAHRAMIAN A R, et al.Preparation and characterization of C/SiO2/SiC aerogels based on novolac/silica hybrid hyperporous materials.Journal of Non- Crystalline Solids, 2015, 425(1): 146-152. |
[37] | KARNIB M, KABBANI A, HOALIL H, et al.Heavy metals removal using activated carbon, silica and silica activated carbon composite.Energy Procedia, 2014, 50(1): 113-120. |
[38] | LU X, WANG P, ARDUINI-SCHUSTER M C, et al. Thermal transport in organic and opacified silica monolithic aerogels.Journal of Non-crystalline Solids, 1992, 145(1): 207-210. |
[39] | LIU H, LI T, SHI Y, et al.Thermal insulation composite prepared from carbon foam and silica aerogel under ambient pressure.Journal of Materials Engineering and Performance, 2015, 24(10): 4054-4059. |
[40] | PINCHUK O A, DUNDAR F, ATA A, et al.Improved thermal stability, properties, and electrocatalytic activity of Sol-Gel silica modified carbon supported Pt catalysts.International Journal of Hydrogen Energy, 2012, 37(3): 2111-2120. |
[41] | MONER-GIRONA M, MARTINEZ E, ESTEVE J, et al.Micromechanical properties of carbon-silica aerogel composites.Applied Physics A, 2002, 74(1): 119-122. |
[42] | LIU C, KOMARNENI S.Carbon-silica xerogel and aerogel composites.Journal of Porous Materials, 1995, 1(1): 75-84. |
[43] | SPASSOVA I, STOEVA N, NICKOLOV R, et al.Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides.Applied Surface Science, 2016, 369(1): 120-129. |
[44] | WORSLEY M A, KUNTZ J D, SATCHER J H, et al.Synthesis and characterization of monolithic, high surface area SiO2/C and SiC/C composites.Journal of Materials Chemistry, 2010, 20(23): 4840-4844. |
[45] | LEVENTIS N, SADEKAR A, CHANDRASEKARANn N, et al.Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks.Chemistry of Materials, 2010, 22(9): 2790-2803. |
[46] | PANTONO C G, SINGH A K, ZHANGH. Silicon oxycarbide glasses.Journal of Sol-Gel Science and Technology, 1999, 14(1): 7-25. |
[47] | LIU C, CHEN H Z, KOMARNENF S, et al.High surface area SiC/silicon oxycarbide glasses prepared from phenyltrimethoxysilane- tetramethoxysilane gels.Journal of Porous Materials, 1996, 2(3): 245-252. |
[48] | SINGH A K, PANTANO C G.Porous silicon oxycarbide glasses.Journal of the American Ceramic Society, 1996, 79(10): 2696-2704. |
[49] | ZHANG H, PANTANO C G.Synthesis and characterization of silicon oxycarbide glasses.Journal of the American Ceramic Society, 1990, 73(4): 958-963. |
[50] | BABONNEAU F, THORNE K, MACKENZIE J D.Dimethyldiethoxysilane/tetraethoxysilane copolymers: precursors for the silicon-carbon-oxygen system.Chemistry of Materials, 1989, 1(5): 554-558. |
[51] | FENG J, XIAO Y, JIANG Y, et al.Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate/polydimethylsiloxane.Ceramics International, 2015, 41(4): 5281-5286. |
[52] | TOURY B, BLUM R, GOLETTO V, et al.Thermal stability of periodic mesoporous SiCO glasses.Journal of Sol-Gel Science and Technology, 2005, 33(1): 99-102. |
[53] | TAMAYO A, TELLEZ L, PENA-ALONSO R, et al.Surface changes during pyrolytic conversion of hybrid materials to oxycarbide glasses.Journal of Materials Science, 2009, 44(1): 5743-5753. |
[54] | ARAVIND P R, RATKE L, KOLBE M, et al.Gels dried under supercritical and ambient conditions: a comparative study and their subsequent conversion to silica-carbon composite aerogels. Journal of Sol-Gel Science and Technology, 2013, 67(3): 592-600. |
[55] | PRADEEP V S, AYANA D G, GRACZYK-ZAJAC M, et al.High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochimica Acta, 2015, 157(1): 41-45. |
[56] | ARAVIND P R, SORARU G D.Porous silicon oxycarbide glasses from hybrid ambigels. Microporous and Mesoporous Materials, 2011, 142(2/3): 511-517. |
[57] | TAMAYO A, RUBIO F, RUBIO J, et al.Surface and structural modification of nanostructured mesoporous silicon oxycarbide glasses obtained from preceramic hybrids aged in NH4OH.Journal of the American Ceramic Society, 2013, 96(1): 323-330. |
[58] | PARMENTIER J, SORARU G D, BABONNEAU F.Influence of the microstructure on the high temperature behaviour of gel-derived SiOC glasses.Journal of the European Ceramic Society, 2001, 21(6): 817-824. |
[59] | WEINBERGER M, PUCHEGGER S, FROSCHL T, et al.Sol- Gel Processing of a glycolated cyclic organosilane and its pyrolysis to silicon oxycarbide monoliths with multiscale porosity and large surface areas.Chemistry of Materials, 2010, 22(4): 1509-1520. |
[60] | SORARU G D, MODENA S, GUADAGNINO E, et al.Chemical durability of silicon oxycarbide glasses.Journal of the American Ceramic Society, 2002, 85(6): 1529-1536. |
[61] | BREQUEL H, PARMENTIER J, WALTER S, et al.Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses.Chemistry of Materials, 2004, 16(1): 2585-2598. |
[62] | LATOURNERIE J, DEMPSEY P, HOURLIER‐BAHLOUL D, et al. Silicon oxycarbide glasses: Part 1-Thermochemical stability.Journal of the American Ceramic Society, 2006, 89(5): 1485-1491. |
[63] | SORARU G D, DALLAPICCOLA E, D'ANDREA G. Mechanical characterization of Sol-Gel-derived silicon oxycarbide glasses.Journal of the American Ceramic Society, 1996, 79(8): 2074-2080. |
[64] | RENLUND G M, PROCHAZKA S, DOREMUS R H.Silicon oxycarbide glasses: Part II. Structure and properties.Journal of Materials Research, 1991, 6(6): 2723-2734. |
[65] | MOYSAN C, RIEDEL R, HARSHE R, et al.Mechanical characterization of a polysiloxane-derived SiOC glass.Journal of the European Ceramic Society, 2007, 27(1): 397-403. |
[66] | QIU L, LI Y M, ZHENG X H, et al.Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics.International Journal of Thermophysics, 2014, 35(1): 76-89. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 陈义, 邱海鹏, 陈明伟, 徐昊, 崔恒. SiC/SiC复合材料基体硼改性方法及其力学性能研究[J]. 无机材料学报, 2025, 40(5): 504-510. |
[8] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[9] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[10] | 袁利萍, 吴袁泊, 俞佳静, 张世琰, 孙铱, 胡云楚, 范友华. 磷钼酸插层水滑石复合CNFs气凝胶的制备及其隔热保温性能[J]. 无机材料学报, 2025, 40(4): 415-424. |
[11] | 穆爽, 马沁, 张禹, 沈旭, 杨金山, 董绍明. Yb2Si2O7改性SiC/SiC复合材料的氧化行为研究[J]. 无机材料学报, 2025, 40(3): 323-328. |
[12] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[13] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[14] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[15] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||