无机材料学报 ›› 2017, Vol. 32 ›› Issue (2): 191-196.DOI: 10.15541/jim20160247 CSTR: 32189.14.10.15541/jim20160247
王 锦1, 陶 科2, 李国峰1, 梁 科1, 蔡宏琨1
收稿日期:
2016-04-12
修回日期:
2016-06-29
出版日期:
2017-02-20
网络出版日期:
2017-01-13
WANG Jin1, TAO Ke2, LI Guo-Feng1, LIANG Ke1, CAI Hong-Kun1
Received:
2016-04-12
Revised:
2016-06-29
Published:
2017-02-20
Online:
2017-01-13
摘要:
采用反应型热化学气相沉积系统在硅(100)衬底上外延生长富锗硅锗薄膜。四氟化锗作为锗源, 乙硅烷作为还原性气体。通过设计表面反应, 在低温条件下(350℃)制备了高质量的富锗硅锗薄膜。研究了氢退火对低温硅锗外延薄膜微结构和电学性能的影响。结果发现退火温度高于700℃时, 外延薄膜的表面形貌随着退火温度的升高迅速恶化。当退火温度为650℃时, 获得了最佳的退火效果。在该退火条件下, 外延薄膜的螺旋位错密度从3.7×106 cm-2下降到4.3×105 cm-2, 表面粗糙度从1.27 nm下降到1.18 nm, 而外延薄膜的结晶质量也有效提高。霍尔效应测试表明, 经退火处理的样品载流子迁移率明显提高。这些结果表明, 经过氢退火处理后, 反应型热化学气相沉积制备的低温硅锗外延薄膜可以获得与高温下硅锗外延薄膜相比拟的性能。
中图分类号:
王 锦, 陶 科, 李国峰, 梁 科, 蔡宏琨. 氢气氛退火对硅上低温外延制备的硅锗薄膜性能的影响[J]. 无机材料学报, 2017, 32(2): 191-196.
WANG Jin, TAO Ke, LI Guo-Feng, LIANG Ke, CAI Hong-Kun. Effect of Hydrogen Annealing on the Property of Low-temperature Epitaxial Growth of Sige Thin Films on Si Substrate[J]. Journal of Inorganic Materials, 2017, 32(2): 191-196.
图1 硅锗外延薄膜的断面透射电镜照片(a)及样品不同深度的电子衍射谱(b~d)
Fig. 1 (a) Cross-sectional TEM image of epitaxial SiGe films on silicon substrate, (b)-(d) electron diffraction patterns for Si substrate, SiGe/Si interface and SiGe epilayer (e) which extracted from (d) for calculation The red circles mark the position for measurement of electron diffraction patterns
图3 经不同温度退火处理后硅锗外延薄膜由TOF-SIMS测得的离子组分深度分布
Fig. 3 Composition depth profile of ions detected by TOF-SIMS measurement from epitaxial SiGe films annealed at different temperatures
图5 硅锗外延薄膜经选择性湿法腐蚀后的表面扫描电镜照片
Fig. 5 SEM images of SiGe films after a selective wet etch, and pits with reversed pyramidal structure exhibited on the surface(a) As-deposited sample; (b) 650℃-annealed sample
SixGe1-x | Resistance /(Ω·cm) | Carrier concentration/cm-3 | Mobility/ (cm2·V-1·s-1) |
---|---|---|---|
As-grown | 0.402 | 6.35×1016 | 244 |
Annealed | 1.470 | 1.07×1016 | 409 |
表1 由霍尔仪测得的硅锗外延薄膜的电学性能(膜厚900 nm)
Table 1 Electrical properties of SiGe thin films by Hall-effect measurement
SixGe1-x | Resistance /(Ω·cm) | Carrier concentration/cm-3 | Mobility/ (cm2·V-1·s-1) |
---|---|---|---|
As-grown | 0.402 | 6.35×1016 | 244 |
Annealed | 1.470 | 1.07×1016 | 409 |
Ref. | Temp./℃ | Thickness /nm | RMS roughness/nm | TDD/cm-2 | Mobility/(cm2·V-1·s-1) | |||
---|---|---|---|---|---|---|---|---|
As-grown | Annealed | As-grown | Annealed | Annealed | ||||
[21] | LT | 400 | 1224 | 0.40 | 0.7 | 1.70×108 | 1.00×107 | NA |
HT | 670 | |||||||
[22] | LT | 350 | 50 | 0.70 | NA | 5.00×105 | NA | 550 |
HT | 600 | 300 | ||||||
[23] | LT | 335 | 2000 | 0.60 | 1.6 | NA | 2.00×107 | NA |
HT | 670 | |||||||
[24] | LT | 400 | 2500 | 1.20 | 1.0 | NA | 6.00×106 | NA |
HT | 750 | |||||||
[25] | LT | 400 | 980 | 3.19 | 0.9 | NA | 6.00×106 | NA |
HT | 670 |
表2 文献中报道的采用低温/高温法制备的锗外延薄膜的性能参数
Table 2 Summary of the process parameters and film quality from literatures which reported the epitaxial growth of Ge by using low temperature/high temperature method
Ref. | Temp./℃ | Thickness /nm | RMS roughness/nm | TDD/cm-2 | Mobility/(cm2·V-1·s-1) | |||
---|---|---|---|---|---|---|---|---|
As-grown | Annealed | As-grown | Annealed | Annealed | ||||
[21] | LT | 400 | 1224 | 0.40 | 0.7 | 1.70×108 | 1.00×107 | NA |
HT | 670 | |||||||
[22] | LT | 350 | 50 | 0.70 | NA | 5.00×105 | NA | 550 |
HT | 600 | 300 | ||||||
[23] | LT | 335 | 2000 | 0.60 | 1.6 | NA | 2.00×107 | NA |
HT | 670 | |||||||
[24] | LT | 400 | 2500 | 1.20 | 1.0 | NA | 6.00×106 | NA |
HT | 750 | |||||||
[25] | LT | 400 | 980 | 3.19 | 0.9 | NA | 6.00×106 | NA |
HT | 670 |
[1] | PAUL D J.Silicon-germanium strained layer materials in microelectronics.Advanced Materials, 1999, 11(17): 191-204. |
[2] | CHANG S T, LIAO M H, LIN W K.Si/SiGe hetero-junction solar cell with optimization design and theoretical analysis.Thin Solid Films, 2011, 519(15): 5022-5025. |
[3] | HADI S A,HASHEMI P, NAYFEH A,et al. Thin film a-Si/c- Si1-xGex/c-Si heterojunction solar cells: design and material quality requirements, thin-film si cells.ECS Transactions, 2011, 41(4): 3-14. |
[4] | CANNON D D, LIU J, DANIELSON D T,et al. Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates.Applied Physics Letters, 2007, 91(25): 252111. |
[5] | CHEN J X, ERNST F, HANSSON P O,et al. Liquid phase epitaxy of GeSi on {111} Si substrates: lattice defect structure and electronic properties.Journal of Crystal Growth, 1992, 118(s 3-4): 452-460. |
[6] | CURRIEM T, SAMAVEDAM S B, LANGDO T A,et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing.Applied Physics Letters, 1998, 72(14): 1718-1720. |
[7] | LOH T H, NGUYEN H S, TUNG C H, et al.Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition.Applied Physics Letters.2007, 90(90): 092108-1-3. |
[8] | GUO L, ZHAO S, WANG J,et al. Fabrication of strained Ge film using a thin SiGe virtual substrate.Journal of Semiconductors, 2009, 30(9): 16-20. |
[9] | LOO R, SOURIAU L, ONG P,et al. Smooth and high quality epitaxial strained Ge grown on SiGe strain relaxed buffers with 70-85% Ge.Journal of Crystal Growth, 2011, 324(1): 15-21. |
[10] | CHOI D, GE Y, HARRIS J S,et al. Low surface roughness and threading dislocation density Ge growth on Si (001) .Journal of Crystal Growth, 2008, 310(18): 4273-4279. |
[11] | KIM H-W, SHIN K W, LEE G D,et al. High quality Ge epitaxial layers on Si by ultrahigh vacuum chemical vapor deposition.Thin Solid Films, 2009, 517(14): 3990-3994. |
[12] | YAMAMOTO M, HANNA J, MIYAUCHI M.New low pressure chemical vapor deposition technique for Ge crystalline thin films.Applied Physics Letter, 1993, 63(18): 2508-2510. |
[13] | YAMAMOTO M, TAKADA Y, HANNA J.Selective growth of Ge in GeF4-Si2H6 system.Applied Physics Letter, 1994, 64(25): 3467-3469. |
[14] | HANNA J, SHIMIZU K.Low-temperature growth of polycrystalline Si and Ge films by redox reactions of Si2H6 and GeF4.Journal of Organometallic Chemistry, 2000, 611(1): 531-536. |
[15] | TAO K, KUROSAWA Y, HANNA J.Low-temperature epitaxial growth of high quality Si1-xGex (x≥0.99) films on Si(001) wafer by reactive thermal chemical vapor deposition.Applied Physics Letters, 2013, 102: 182109-1-5. |
[16] | NAYFEH A, CHUI C O, SARASWATK C,et al. Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality.Applied Physics Letters, 2004, 85(14): 2815-2817. |
[17] | HARTMANN J M, ABBADIEA,BARNES J P,et al.Impact of the H2 anneal on the structural and optical properties of thin and thick Ge layers on Si; low temperature surface passivation of Ge by Si.Journal of Crystal Growth, 2010, 312(4): 532-541. |
[18] | KOBAYASHI S, NISHI Y, SARASWAT K C.Effect of isochronal hydrogen annealing on surface roughness and threading dislocation density of epitaxial Ge films grown on Si.Thin Solid Films, 2010, 518(6): S136-S139. |
[19] | LUAN H C, LIM D R, LEE K K,et al. High-quality Ge epilayers on Si with low threading-dislocation densities.Applied Physics Letters, 1999, 75(19): 2909-2911. |
[20] | PEZZOLI F, BONERA E, GRILLI E,et al. Raman spectroscopy determination of composition and strain in image heterostructures.Materials Science in Semiconductor Processing, 2008, 11(s 5-6): 279-284. |
[21] | SHAH V A, DOBBIE A, MYRONOV M,et al. High quality relaxed Ge layers grown directly on a Si(001) substrate.Solid-State Electronics, 2011, 62(1): 189-194. |
[22] | ZHOU Z, LI C, LAI H,et al. The influence of low-temperature Ge seed layer on growth of high-quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition.Journal of Crystal Growth, 2008, 310(10): 2508-2513. |
[23] | OLUBUYIDE O O, DANIELSON D T,KIMERLING L C,et al. Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition.Thin Solid Films, 2006, 508(1): 14-19. |
[24] | HARTMANN J M, DAMLENCOURT J F, BOGUMILOWICZ Y,et al. Reduced pressure-chemical vapor deposition of intrinsic and doped ge layers on Si(001) for microelectronics and optoelectronics purposes.Journal of Crystal Growth, 2005, 274(1/2): 90-99. |
[25] | TAN Y H, TAN C S.Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition. Thin Solid Films, 2012, 520(7): 2711-2716. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||