无机材料学报 ›› 2017, Vol. 32 ›› Issue (2): 191-196.DOI: 10.15541/jim20160247 CSTR: 32189.14.10.15541/jim20160247
王 锦1, 陶 科2, 李国峰1, 梁 科1, 蔡宏琨1
收稿日期:
2016-04-12
修回日期:
2016-06-29
出版日期:
2017-02-20
网络出版日期:
2017-01-13
WANG Jin1, TAO Ke2, LI Guo-Feng1, LIANG Ke1, CAI Hong-Kun1
Received:
2016-04-12
Revised:
2016-06-29
Published:
2017-02-20
Online:
2017-01-13
摘要:
采用反应型热化学气相沉积系统在硅(100)衬底上外延生长富锗硅锗薄膜。四氟化锗作为锗源, 乙硅烷作为还原性气体。通过设计表面反应, 在低温条件下(350℃)制备了高质量的富锗硅锗薄膜。研究了氢退火对低温硅锗外延薄膜微结构和电学性能的影响。结果发现退火温度高于700℃时, 外延薄膜的表面形貌随着退火温度的升高迅速恶化。当退火温度为650℃时, 获得了最佳的退火效果。在该退火条件下, 外延薄膜的螺旋位错密度从3.7×106 cm-2下降到4.3×105 cm-2, 表面粗糙度从1.27 nm下降到1.18 nm, 而外延薄膜的结晶质量也有效提高。霍尔效应测试表明, 经退火处理的样品载流子迁移率明显提高。这些结果表明, 经过氢退火处理后, 反应型热化学气相沉积制备的低温硅锗外延薄膜可以获得与高温下硅锗外延薄膜相比拟的性能。
中图分类号:
王 锦, 陶 科, 李国峰, 梁 科, 蔡宏琨. 氢气氛退火对硅上低温外延制备的硅锗薄膜性能的影响[J]. 无机材料学报, 2017, 32(2): 191-196.
WANG Jin, TAO Ke, LI Guo-Feng, LIANG Ke, CAI Hong-Kun. Effect of Hydrogen Annealing on the Property of Low-temperature Epitaxial Growth of Sige Thin Films on Si Substrate[J]. Journal of Inorganic Materials, 2017, 32(2): 191-196.
图1 硅锗外延薄膜的断面透射电镜照片(a)及样品不同深度的电子衍射谱(b~d)
Fig. 1 (a) Cross-sectional TEM image of epitaxial SiGe films on silicon substrate, (b)-(d) electron diffraction patterns for Si substrate, SiGe/Si interface and SiGe epilayer (e) which extracted from (d) for calculation The red circles mark the position for measurement of electron diffraction patterns
图3 经不同温度退火处理后硅锗外延薄膜由TOF-SIMS测得的离子组分深度分布
Fig. 3 Composition depth profile of ions detected by TOF-SIMS measurement from epitaxial SiGe films annealed at different temperatures
图5 硅锗外延薄膜经选择性湿法腐蚀后的表面扫描电镜照片
Fig. 5 SEM images of SiGe films after a selective wet etch, and pits with reversed pyramidal structure exhibited on the surface(a) As-deposited sample; (b) 650℃-annealed sample
SixGe1-x | Resistance /(Ω·cm) | Carrier concentration/cm-3 | Mobility/ (cm2·V-1·s-1) |
---|---|---|---|
As-grown | 0.402 | 6.35×1016 | 244 |
Annealed | 1.470 | 1.07×1016 | 409 |
表1 由霍尔仪测得的硅锗外延薄膜的电学性能(膜厚900 nm)
Table 1 Electrical properties of SiGe thin films by Hall-effect measurement
SixGe1-x | Resistance /(Ω·cm) | Carrier concentration/cm-3 | Mobility/ (cm2·V-1·s-1) |
---|---|---|---|
As-grown | 0.402 | 6.35×1016 | 244 |
Annealed | 1.470 | 1.07×1016 | 409 |
Ref. | Temp./℃ | Thickness /nm | RMS roughness/nm | TDD/cm-2 | Mobility/(cm2·V-1·s-1) | |||
---|---|---|---|---|---|---|---|---|
As-grown | Annealed | As-grown | Annealed | Annealed | ||||
[21] | LT | 400 | 1224 | 0.40 | 0.7 | 1.70×108 | 1.00×107 | NA |
HT | 670 | |||||||
[22] | LT | 350 | 50 | 0.70 | NA | 5.00×105 | NA | 550 |
HT | 600 | 300 | ||||||
[23] | LT | 335 | 2000 | 0.60 | 1.6 | NA | 2.00×107 | NA |
HT | 670 | |||||||
[24] | LT | 400 | 2500 | 1.20 | 1.0 | NA | 6.00×106 | NA |
HT | 750 | |||||||
[25] | LT | 400 | 980 | 3.19 | 0.9 | NA | 6.00×106 | NA |
HT | 670 |
表2 文献中报道的采用低温/高温法制备的锗外延薄膜的性能参数
Table 2 Summary of the process parameters and film quality from literatures which reported the epitaxial growth of Ge by using low temperature/high temperature method
Ref. | Temp./℃ | Thickness /nm | RMS roughness/nm | TDD/cm-2 | Mobility/(cm2·V-1·s-1) | |||
---|---|---|---|---|---|---|---|---|
As-grown | Annealed | As-grown | Annealed | Annealed | ||||
[21] | LT | 400 | 1224 | 0.40 | 0.7 | 1.70×108 | 1.00×107 | NA |
HT | 670 | |||||||
[22] | LT | 350 | 50 | 0.70 | NA | 5.00×105 | NA | 550 |
HT | 600 | 300 | ||||||
[23] | LT | 335 | 2000 | 0.60 | 1.6 | NA | 2.00×107 | NA |
HT | 670 | |||||||
[24] | LT | 400 | 2500 | 1.20 | 1.0 | NA | 6.00×106 | NA |
HT | 750 | |||||||
[25] | LT | 400 | 980 | 3.19 | 0.9 | NA | 6.00×106 | NA |
HT | 670 |
[1] | PAUL D J.Silicon-germanium strained layer materials in microelectronics.Advanced Materials, 1999, 11(17): 191-204. |
[2] | CHANG S T, LIAO M H, LIN W K.Si/SiGe hetero-junction solar cell with optimization design and theoretical analysis.Thin Solid Films, 2011, 519(15): 5022-5025. |
[3] | HADI S A,HASHEMI P, NAYFEH A,et al. Thin film a-Si/c- Si1-xGex/c-Si heterojunction solar cells: design and material quality requirements, thin-film si cells.ECS Transactions, 2011, 41(4): 3-14. |
[4] | CANNON D D, LIU J, DANIELSON D T,et al. Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates.Applied Physics Letters, 2007, 91(25): 252111. |
[5] | CHEN J X, ERNST F, HANSSON P O,et al. Liquid phase epitaxy of GeSi on {111} Si substrates: lattice defect structure and electronic properties.Journal of Crystal Growth, 1992, 118(s 3-4): 452-460. |
[6] | CURRIEM T, SAMAVEDAM S B, LANGDO T A,et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing.Applied Physics Letters, 1998, 72(14): 1718-1720. |
[7] | LOH T H, NGUYEN H S, TUNG C H, et al.Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition.Applied Physics Letters.2007, 90(90): 092108-1-3. |
[8] | GUO L, ZHAO S, WANG J,et al. Fabrication of strained Ge film using a thin SiGe virtual substrate.Journal of Semiconductors, 2009, 30(9): 16-20. |
[9] | LOO R, SOURIAU L, ONG P,et al. Smooth and high quality epitaxial strained Ge grown on SiGe strain relaxed buffers with 70-85% Ge.Journal of Crystal Growth, 2011, 324(1): 15-21. |
[10] | CHOI D, GE Y, HARRIS J S,et al. Low surface roughness and threading dislocation density Ge growth on Si (001) .Journal of Crystal Growth, 2008, 310(18): 4273-4279. |
[11] | KIM H-W, SHIN K W, LEE G D,et al. High quality Ge epitaxial layers on Si by ultrahigh vacuum chemical vapor deposition.Thin Solid Films, 2009, 517(14): 3990-3994. |
[12] | YAMAMOTO M, HANNA J, MIYAUCHI M.New low pressure chemical vapor deposition technique for Ge crystalline thin films.Applied Physics Letter, 1993, 63(18): 2508-2510. |
[13] | YAMAMOTO M, TAKADA Y, HANNA J.Selective growth of Ge in GeF4-Si2H6 system.Applied Physics Letter, 1994, 64(25): 3467-3469. |
[14] | HANNA J, SHIMIZU K.Low-temperature growth of polycrystalline Si and Ge films by redox reactions of Si2H6 and GeF4.Journal of Organometallic Chemistry, 2000, 611(1): 531-536. |
[15] | TAO K, KUROSAWA Y, HANNA J.Low-temperature epitaxial growth of high quality Si1-xGex (x≥0.99) films on Si(001) wafer by reactive thermal chemical vapor deposition.Applied Physics Letters, 2013, 102: 182109-1-5. |
[16] | NAYFEH A, CHUI C O, SARASWATK C,et al. Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality.Applied Physics Letters, 2004, 85(14): 2815-2817. |
[17] | HARTMANN J M, ABBADIEA,BARNES J P,et al.Impact of the H2 anneal on the structural and optical properties of thin and thick Ge layers on Si; low temperature surface passivation of Ge by Si.Journal of Crystal Growth, 2010, 312(4): 532-541. |
[18] | KOBAYASHI S, NISHI Y, SARASWAT K C.Effect of isochronal hydrogen annealing on surface roughness and threading dislocation density of epitaxial Ge films grown on Si.Thin Solid Films, 2010, 518(6): S136-S139. |
[19] | LUAN H C, LIM D R, LEE K K,et al. High-quality Ge epilayers on Si with low threading-dislocation densities.Applied Physics Letters, 1999, 75(19): 2909-2911. |
[20] | PEZZOLI F, BONERA E, GRILLI E,et al. Raman spectroscopy determination of composition and strain in image heterostructures.Materials Science in Semiconductor Processing, 2008, 11(s 5-6): 279-284. |
[21] | SHAH V A, DOBBIE A, MYRONOV M,et al. High quality relaxed Ge layers grown directly on a Si(001) substrate.Solid-State Electronics, 2011, 62(1): 189-194. |
[22] | ZHOU Z, LI C, LAI H,et al. The influence of low-temperature Ge seed layer on growth of high-quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition.Journal of Crystal Growth, 2008, 310(10): 2508-2513. |
[23] | OLUBUYIDE O O, DANIELSON D T,KIMERLING L C,et al. Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition.Thin Solid Films, 2006, 508(1): 14-19. |
[24] | HARTMANN J M, DAMLENCOURT J F, BOGUMILOWICZ Y,et al. Reduced pressure-chemical vapor deposition of intrinsic and doped ge layers on Si(001) for microelectronics and optoelectronics purposes.Journal of Crystal Growth, 2005, 274(1/2): 90-99. |
[25] | TAN Y H, TAN C S.Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition. Thin Solid Films, 2012, 520(7): 2711-2716. |
[1] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
[2] | 汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764. |
[3] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[4] | 杨光, 张楠, 陈舒锦, 王义, 谢安, 严育杰. 基于多孔ITO电极的WO3薄膜的制备及其电致变色性能[J]. 无机材料学报, 2025, 40(7): 781-789. |
[5] | 孙晶, 李翔, 毛小建, 章健, 王士维. 月桂酸改性剂对氮化铝粉体抗水解性能的影响[J]. 无机材料学报, 2025, 40(7): 826-832. |
[6] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[7] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
[8] | 李文元, 徐佳楠, 邓瀚澳, 常爱民, 张博. 钒取代对LaTaO4陶瓷微观结构和微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 697-703. |
[9] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[10] | 董晨雨, 郑维杰, 马一帆, 郑春艳, 温峥. 压电力显微镜表征Pb(Mg,Nb)O3-PbTiO3超薄膜弛豫特性[J]. 无机材料学报, 2025, 40(6): 675-682. |
[11] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[12] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
[13] | 崔宁, 张玉新, 王鲁杰, 李彤阳, 于源, 汤华国, 乔竹辉. (TiVNbMoW)Cx高熵陶瓷的单相形成过程与碳空位调控[J]. 无机材料学报, 2025, 40(5): 511-520. |
[14] | 熊思宇, 莫尘, 朱肖伟, 朱国斌, 陈德钦, 刘来君, 施晓东, 李纯纯. 超低介电常数LiBxAl1-xSi2O6微波介质陶瓷的低温烧结[J]. 无机材料学报, 2025, 40(5): 536-544. |
[15] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||