无机材料学报 ›› 2015, Vol. 30 ›› Issue (4): 337-344.DOI: 10.15541/jim20140364 CSTR: 32189.14.10.15541/jim20140364
• • 下一篇
李 磊, 梁笠智, 吴 恒, 梁 爽, 朱瑛莺, 朱信华
收稿日期:
2014-07-14
修回日期:
2014-09-24
出版日期:
2015-04-29
网络出版日期:
2015-03-26
作者简介:
李 磊(1990–), 男, 硕士研究生. E-mail: lilei7151990@126.com
基金资助:
LI Lei, LIANG Li-Zhi, WU Heng, LIANG Shuang, ZHU Ying-Ying, ZHU Xin-Hua
Received:
2014-07-14
Revised:
2014-09-24
Published:
2015-04-29
Online:
2015-03-26
About author:
LI Lei. E-mail: lilei7151990@126.com
Supported by:
摘要:
钙钛矿结构锰氧化物由于同时存在电荷、自旋、轨道、晶格等多种自由度, 它们之间很强的相互作用和相互竞争导致了一系列新颖的物理现象, 如庞磁电阻效应、巨磁熵效应、绝缘体-金属转变、电子相分离、电荷/轨道有序等现象, 使其成为凝聚态物理学研究的热点。随着微电子器件日趋集成化和微型化, 其特征尺寸越来越小, 目前基于钙钛矿结构锰氧化物微电子器件的特征尺寸已经进入纳米尺度。在纳米尺度钙钛矿结构锰氧化物具有显著的尺寸效应, 表现出与薄膜及块材不同的电、磁输运特性, 在新一代微电子器件领域具有重要的应用价值。近年来人们在钙钛矿锰氧化物低维纳米结构制备、电磁输运特性测量、微结构表征及理论模拟方面, 都取得了较大的研究进展, 本文对此进行了评述。首先, 概述了钙钛矿锰氧化物低维纳米结构的微结构研究进展; 介绍了钙钛矿锰氧化物低维纳米结构的电子相分离及电荷有序现象; 评述了其电磁输运特性的纳米尺度表征; 讨论了钙钛矿锰氧化物低维纳米结构在自旋电子学、磁随机存储器和传感器方面的应用进展。最后指出了未来钙钛矿锰氧化物低维纳米结构研究需要重点解决的一些问题。
中图分类号:
李 磊, 梁笠智, 吴 恒, 梁 爽, 朱瑛莺, 朱信华. 钙钛矿锰氧化物低维纳米结构研究进展[J]. 无机材料学报, 2015, 30(4): 337-344.
LI Lei, LIANG Li-Zhi, WU Heng, LIANG Shuang, ZHU Ying-Ying, ZHU Xin-Hua. Advances on Low-dimensional Perovskite Manganite Nanostructures[J]. Journal of Inorganic Materials, 2015, 30(4): 337-344.
图1 (a) La0.5Sr0.5MnO3的SEM照片, 插图为其XRD图谱; (b) 直径约45 nm的单根纳米线的TEM照片, 左上角插图为HRTEM照片,右下角插图为选区电子衍射图谱 [11]
Fig. 1 (a) SEM image of La0.5Sr0.5MnO3 nanowires. The inset is the XRD pattern of La0.5Sr0.5MnO3 nanowires;(b) TEM image of a single nanowire with a diameter around 45 nm. The inset in the top left corner is the HRTEM image of a single La0.5Sr0.5MnO3 nanowires. The inset in the lower right corner is the selected area diffraction pattern taken with TEM[11]
图2 La2/3Sr1/3MnO3纳米点阵列的AFM 图像[14]
Fig. 2 Atomic force microscope (AFM) image of a La2/3Sr1/3MnO3 nanodot array[14](a) 3D AFM image of a 3680 nm×3680 nm section of the array. (b) AFM profiles of three representative dots from the AFM image in (a). Dot diameters are ~100 nm, heights are 37 nm
图3 双轨道模型下1D相图,其中JH = 8.0, J’= 0.05, 跳跃轨道积分分量t11=t22=2t12=2t21[20]
Fig. 3 Phase diagram of two orbitals model in 1D, JH = 8.0, J’ = 0.05, and using the hopping set t11=t22=2t12=2t21[20]
图4 La0.33Ca0.67MnO3的电荷有序条纹[23]
Fig. 4 Pairing of charge-ordered stripes in La0.33Ca0.67MnO3 (a) High-resolution lattice image obtained at 95 K; (b) Schematic model in the a-b plane showing the pairing and orbital ordering of Mn3+ and Mn4+ [23]
[1] | CHEN C X.Charge ordering in the perovskite manganites.Journal of Inorganic Materials, 2005, 20(1): 1-12. |
[2] | HAN L A, MOU G D, HE Y J.Research progress in phase separation in perovskite-type manganese oxides.Materials Review, 2008, 22(z1): 310-313. |
[3] | LIU Y K, YIN Y W, LI X G. Colossal magnetoresistance in manganites and related prototype devices. Chinese Physics B, 2013, 22(8): 087502-1-19. |
[4] | LIU P, PENG Z S.Research in phase separation of perovskite-type manganese oxides.Journal of Suzhou College, 2009, 24(1): 107-110. |
[5] | ZENER C.Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure.Physical Review, 1951, 82(3): 403-405. |
[6] | MINIS A J, SHRAIMAN B I, MUELLER R.Dynamic Jahn-Teller effect and colossal magnetoresistance in La1-xSrxMnO3.Physical Review Letters, 1996, 77(1): 175-178. |
[7] | TOKURA Y.Correlated-electron physics in transitional-metal oxides.Physics Today, 2003, 56(7): 50-55. |
[8] | DAGOTTO E.Complexity in strongly correlated electronic systems.Science, 2005, 309(5732): 257-262. |
[9] | TSAY C Y, HUANG Y H, HUNG D S.Enhanced microwave absorption of La0.7Sr0.3MnO3-δ based composites with added carbon black.Ceramics International, 2014, 40(3): 3947-3951. |
[10] | ZABALETA J, JAAFAR M,ABELLÁN P, et al. Nanoscale magnetic structure and properties of solution-derived self-assembled La0.7Sr0.3MnO3 islands. Journal of Applied Physics, 2012, 111(2): 024307-1-8. |
[11] | DATTA S,CHANDRA S,SAMANTA S, et al. Growth and physical property study of single nanowire (diameter ∼ 45 nm) of half doped manganite. Journal of Nanomaterials, 2013, 2013: 162315-1-6. |
[12] | BANERJEE N, KRUPANIDHI S B.Anomalous magnetic behavior of La0.6Sr0.4MnO3 nano-tubes constituted with 3-12 nm particles. Applied Physics A, 2013, 111(2): 605-612. |
[13] | QI S Y, FENG J, XU X D, et al.Preparation and magnetic property of La0.7Sr0.3MnO3 nanorod by combination Sol-Gel with molten salt.Chemical Research in Chinese Universities, 2008, 24(6): 672-674. |
[14] | RUZMETOV D, SEO Y, BELENKY L J, et al.Epitaxial magnetic perovskite nanostructures.Advanced Materials, 2005, 17(23): 2869-2872. |
[15] | LIANG L Z, LI L, WU H, et al. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures. Nanoscale Research Letters, 2014, 9(1): 325-1-14. |
[16] | ZHANG T, WANG X P, FANG Q F.Evolution of the electronic phase separation with magnetic field in bulk and nanometer Pr0.67Ca0.33MnO3 particles.Journal of Physical Chemistry C, 2011, 115(40): 19482-19487. |
[17] | LI L, LI H, ZHAI X F, et al. Fabrication and magnetic properties of single-crystalline La0.33Pr0.34Ca0.33MnO3/MgO nanowires. Applied Physics Letters, 2013, 103(11):113101-1-4. |
[18] | MOREO A, YUNOKI S, DAGOTTO E.Phase separation scenario for manganese oxides and related materials.Science, 1999, 283(5410): 2034-2040. |
[19] | YUNOKI S, MOREO A.Static and dynamical properties of the ferromagnetic Kondo model with direct antife fromagnetic coupling between the localized t2g electrons.Physical Review Letters, 1998, 58(10):6403-6413. |
[20] | YUNOKI S, MOREO A, DAGOTTO E.Phase separation induced by orbital degrees of freedom in models for manganites with Jahn-Teller phonons.Physical Review Letters, 1998, 81(25): 5612-5615. |
[21] | CHEN C H, CHEONG S W.Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5 MnO3.Physical Review Letters, 1996, 76(21): 4042-4045. |
[22] | RADAELI P G, COX D E, MAREZIO M, et al.Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3s.Physical Review B, 1997, 55(5):3015-3023. |
[23] | MORI S, CHEN C H, CHEONG S W.Pairing of charge-ordered stripes in (La,Ca)MnO3.Nature, 1998, 392(6675): 473-476. |
[24] | ZHANG T, ZHOU T F, QIAN T, et al. Particle size effects on interplay between charge ordering and magnetic properties in nanosized La0.25Ca0.75MnO3. Physical Review B, 2007, 76: 174415-1-7. |
[25] | HUANG X H, DING J F, ZHANG G Q, et al. Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles. Physical Review B, 2008, 78: 224408-1-5. |
[26] | WANG Y F, YANG H, XIAN T, et al.Preparation and photocatalytic properties of La0.7Sr0.3MnO3 nanoparticles. Chinese Journal of Materials Research, 2012, 26(5): 476-482. |
[27] | JUGDERSUREN B, KANG S M, DIPIETRO R S, et al. Large low field magnetoresistance in La0.67Sr0.33MnO3 nanowire devices. Applied Physics Letters, 2011, 109(1): 016109-1-3. |
[28] | MARÍN L, MORELLÓN L, ALGARABEL P A, et al. Enhanced magnetotransport in nanopatterned manganite nanowires.Nano Letters, 2014, 14(2): 423-428. |
[29] | JIANG T, YANG S W, ZHOU H B, et al. Colossal anisotropic resistivity and oriented magnetic domains in strained La0.325Pr0.3Ca0.375MnO3 films. Applied Physics Letters, 2014, 104: 203501-1-5. |
[30] | NORI R,KALE S N, GANGULY U, et al. Morphology and Curie temperature engineering in crystalline La0.7Sr0.3MnO3 films on Si by pulsed laser deposition. Journal of Applied Physics, 2014, 115(3): 033518-1-11. |
[31] | HIROOKA M, YANAGISAWA Y, KANKI T, et al. Fabrication of sub-50 nm (La,Ba)MnO3 ferromagnetic nanochannels by atomic force microscopy lithography and their electrical properties. Applied Physics Letters, 2006, 89(16): 163113-1-3. |
[32] | GUO X, LI P G, WANG X, et al.Anomalous positive magnetoresistance effect in La0.67Ca0.33MnO3 microbridges.Journal of Alloys and Compounds, 2009, 485(1/2): 802-806. |
[33] | KIM E J, WATTS J L R, HARTENECK B, et al. Magnetic domain structure of La0.7Sr0.3MnO3 nanoislands: experiment and simulation. Journal of Applied Physics, 2011, 109(7): 07D712. |
[34] | JIN K X, CHEN C L, ZHAO S G, et al.Spin transport properties of the thin film doped with La0.85Sr0.015MnO3.Rare Metal Materials And Engineering, 2007, 36(8): 1362-1365. |
[35] | TANG X Y, JIN K X, ZHANO S G, et al.The vacumm annealing effect on the photoinduced properties in La0.7Sr0.3MnO3 thin film.Chinese Journal of Material Research, 2009, 23(4): 395-398. |
[36] | LIU D Q, WANG N N,WANG G, et al.Programmable metallization cells based on amorphous La0.79Sr0.21MnO3 thin films for memory applications.Journal of Alloys and Compounds, 2013, 580: 354-357. |
[37] | HOFFMAN J, HONG X, AHN C H. Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications. Nanotechnology, 2011, 22(25): 254014-1-4. |
[38] | HU M J, MA B W, WANG Z.Research on amperometric-type NOx sensor based on La1-xSrxMnO3 sensitive materials.Chinese Journal of Analytical Chemistry, 2013, 41(10): 1531-1536. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||