[1] Cheng Y S, Pea MA, Fierro J L, et al. Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture. J. Membr. Sci. 2002, 204(1/2): 329-340.[2] Klaiber T. Fuel cells for transport: can the promise be fulfilled- Technical requirements and demands from customers. J. Power Sources, 1996, 61(1/2): 61-69.[3] Suurs RAA, Hekkert MP, Smits REHM. Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies. Int. J. Hydrogen Energy, 2009, 34(24): 9639-9654.[4] 邢丹敏, 侯中军, 燕希强, 等. 国产质子交换膜燃料电池关键材料及部件的电池组性能. 机械工程学报, 2010, 46(6): 16-20.[5] 陈喜蓉, 董新法, 邹汉波, 等. 车载燃料电池富氢气体中CO选择性氧化去除催化剂研究进展. 天然气化工, 2007, 32(4): 59-64. [6] 皱汉波, 董新法. 林维明. 富氢气体中CO选择性氧化研究进展.化学世界, 2005(6): 367-370.[7] Wood B J, Wise H. Dehydrogenation of cyclohexane on a hydrogen- porous membrane. J. Catal., 1968, 11(1): 30-34.[8] Gryaznov V M, Smirnov V S. The reactions of hydrogenations on membrane catalysts. Russ. Chem.Rev. , 1974, 43(10): 821-834.[9] Chen Y, Wang Y, Xu H, et al. Hydrogen production of membrane reformer for methane steam reforming near practical working conditions. J. Memb. Sci., 2008, 32(2): 453-459.[10] 王建宇, 徐又一, 朱宝库. 高分子催化膜及膜反应器研究进展.膜科学与技术, 2007, 27(6): 82-88.[11] 薛俊斌. TS-1沸石催化膜的制备与氧化反应性能研究. 大连: 大连理工大学硕士论文, 2007.[12] 黄仲涛, 曾昭槐, 钟邦克. 无机膜技术及其应用. 北京: 中国石化出版社, 1999.[13] 程云飞, 赵海雷, 王治峰, 等(CHENG Yun-Fei, et al). 钙钛矿型透氧膜材料的结构特点与研究进展. 稀有金属材料与工程(Rare Metal Mat. Eng.), 2008, 37(12): 2069-2074.[14] Keizer K, Bruggraaf A J. Porous ceramic materials membranes in membrane applications. Sci. Ceram., 1988, 14: 83-93.[15] Bonecamp B C.Preparation of asymmetric ceramic membrane supports by dip-casting. Membr. Sci. Technol., 1996, 4: 141-225.[16] Iglesia O de la, Pedemera M, Mallada R, et al. Synthesis and characterization of MCM-48 tubular membranes. J. Memb. Sci., 2006, 280(1/2): 867-875. [17] 顾修君. 1,2-二氯丙烷制环氧丙烷FeAl(PO4)2催化剂及膜催化反应的研究. 天津: 天津大学博士论文, 2002.[18] 王茂功. 二氧化碳部分氧化异丁烷藕合“催化-分离”反应催化剂和膜反应器的研究. 天津: 天津大学博士论文, 2007.[19] Wu S Q, Gallot J E, Bousmina M, et al. Zeolite containing catalytic membrane as interphase contactor. Catal. Today, 2000, 56(1/2/3): 113-129.[20] Zaspalis V T, Praag W V, Keizer K, et al. Reactions of methanol over catalytically active alumina membranes. Appl. Catal., 1991, 74(2): 205-222.[21] Caro J, Caspary K J, Hame C, et al. Catalytic membrane reactors for partial oxidation using perovskite hollow fiber membranes and for partial hydrogenation using a catalytic membrane contactor. Ind. Eng. Chem. Res., 2007, 46(8): 2286-2294.[22] Jiang H, Wang H H, Werth S, et al. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angew. Chem., 2008, 47(48): 9341-9344.[23] Shao Z P, Dong H, Xiong G X, et al. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. J. Membr. Sci., 2001, 183(2): 181-192.[24] 胡 捷. 钙钛矿材料的透氧性能及YBCO膜反应器中甲烷转化制合成气的研究. 郑州: 郑州大学博士论文, 2006.[25] Gellings P J, Bouwmeester H J M. The CRC Handbook of Solid State Electrochemistry. Boca Raton: CRC Press, 1997: 481-553. [26] 朱雪峰, 杨维慎(ZHU Xue-Feng, et al). 混合导体透氧膜反应器. 催化学报(Chinese J. Catal.), 2009, 30(8): 801-816. [27] 童淮荣. 无机膜催化反应的研究进展. 化学反应工程与工艺, 2005, 21(4): 345-352. [28] Dong H, Shao Z P, Xiong G X, et al. Investigation on POM reaction in a new pervskite membrane reactor. Catal. Today, 2001, 67(1/2/3): 3-13.[29] Dong X L, Liu Z K, Jin W Q, et al. A self-catalytic mixed-conducting membrane reactor for effective production of hydrogen from methane. J. Power Sources, 2008, 185(8): 1340-1347.[30] Teraoka Y, Zhang H, Furukawa S, et al. Oxygen permeation through perovskite-type oxides. Chem. Lett., 1985, 167(11): 1743-1746.[31] Teraoka Y, Nobunaga T, Okamoto K, et al. Influence of constituent metal canons in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Inoics, 1991, 48(3/4): 207-212.[32] 邵宗平, 丛 铀, 熊国兴, 等. 新型钙钛矿ABO3型B位含铋混合导体透氧膜. 科学通报, 2000, 45(3): 273-276.[33] Wang H H, Cong Y, Yang W S. Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane reactor. Catal. Today, 2003, 82(1-4): 157-166.[34] KhartonV V, Kovalevsky A V, Yaremchenko A A, et al. Surface modification of La0.3Sr0.7CoO3-δ ceramic membranes. J. Membr. Sci., 2002, 195(2): 277-287.[35] Ikeguchi M, Ishii K, Sekine Y, et al. Improving oxygen permeability in SrFeCo0.5Ox asymmetric membranes by modifying support-layer porous structure. Mater. Lett., 2005, 59(11): 1356-1360.[36] Lee S, Lee K S, Woo S K, et al. Oxygen-permeating of LaSrBFeO3(B=Co,Ga) perovskite membrane surface-modified by LaSrCoO3. Solid State Ionics, 2003, 158(3/4): 287-296.[37] Balachandran U, Dusek J T, Maiya P S, et al. Ceramic membrane reactor for converting methane to syngas. Catal. Today, 1997, 36(3): 265-272. [38] Wang H H, Yang W S, Cong Y, et al. Structure and oxygen permeability of a dual-phase membrane. J. Membr. Sci., 2003, 224(1/2): 107-115. [39] Veser G, Wright A, Caretta R. On the oxidation reduction kinetics of palladium. Catal. Lett., 1999, 58(4): 199-206.[40] Hulbert R C, Konecny J O. Diffusion of hydrogen through palladium. J. Chem. Phys., 1961, 34(2): 655-658.[41] 张小亮, 王卫平, 熊国兴, 等(ZHANG Xiao-Liang, et al). 乙醇水汽重整制氢反应中钯铜合金膜的透氢性能. 催化学报(Chinese J. Catal.), 2010, 31(8): 1049-1053.[42] Galuszka J, Pandey R N, Ahmed S. Methane conversion to syngas in a palladium membrane reactor. Catal. Today, 1998, 46(2/3): 83-89.[43] Criscuoli A, Basile A, Drioli E. An economic feasibility study for water gas shift membrane reactor. J. Membr. Sci., 2001, 181(1): 21-27.[44] Tosti S, Basile A, Chiappetta G, et al. Pd-Ag membrane reactors for water gas shift reaction. Chem. Eng., 2003, 93(1): 23-30.[45] Dittmeyer R, Caro J. Catalytic Membrane Reactor-Handbook of Heterogeneous Catalysis. Weinheim:Wiley-VCH, 2008.[46] Tong J H, Matsumura Y. Effect of catalytic activity on methane steam reforming in hydrogen permeable membrane reactor. Appl. Catal. A: Gen., 2005, 286(2): 226-231.[47] Soldatov A P, Tsodikov M V, Bichkov V Y, et al. Teplyakov From micro- to nano-size catalytic membrane hydrogenation reactors with accumulated hydrogen. Int. J. Hydrogen Energy, 2011, 36(1): 1264-1270. [48] Rahman M A, García-García F R, Irfan Hatim M D, et al. Development of a catalytic hollow fibre membrane micro-reactor for high purity H2 production. J. Membr. Sci., 2011, 368(1/2): 116-123.[49] De Falco M, Di Paola L, Marrelli L, et al. Simulation of large-scale membrane reformers by a two-dimensional model. Chem. Eng. J., 2007, 128(2/3): 115-125.[50] Teixeira M, Madeira L M, Sousa J M, et al. Modeling of a catalytic membrane reactor for CO removal from hydrogen streams-a theoretical study. Int. J. Hydrogen Energy, 2010, 35(20): 11505-11513.[51] Tugnoli A, Landucci G, Cozzani V. Sustainability assessment of hydrogen production by steam reforming. Int. J. Hydrogen Energy, 2008, 33(16): 4345-4357.[52] |