[1] Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci., 2010, 3(2): 174-189.[2] Herbert D, Ulam J. Electric dry cells and storage batteries. US Pat., 3043896 (1962).[3] Yamin H, Gorenshtein A, Penciner J., et al. Lithium sulfur battery: oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc., 1988, 135(5): 1045-1048.[4] Akridge J R, Mikhaylik Y V, White N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics, 2004, 175(1-4): 243-245.[5] Ji X L, Nazar L F. Advances in Li-S batteries. J. Mater. Chem., 2010, 20(44): 9821-9826.[6] Wang J L, Yang J, Xie J Y, et al. A novel conductive polymer- sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater., 2002, 14(13-14): 963-965.[7] Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon- sulphur cathode for lithium-sulphur batteries. Nat. Mater., 2009, 8 (6): 500-506.[8] Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micro-pores of carbon spheres. Energy Environ. Sci., 2010, 3(10): 1531-1537.[9] Li N W, Zheng M B, Hong H L, et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun., 2012, 48(34): 4106-4108.[10] Chen J J, Zhang Q, Shi Y N, et al. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Phys. Chem. Chem. Phys., 2012, 14(16): 5376-5382.[11] Lee K T, Black R, Yim T, et al. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes. Adv. Energy Mater., 2012, 2(12): 1490-1496.[12] Yin L C, Wang J L, Lin F J, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ. Sci., 2012, 5(5): 6966-6972.[13] Li G C, Li G R, Ye S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater., 2012, 2(10): 1238-1245.[14] Li G C, Hu J J, Li G R, et al. Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery. J. Power Sources, 2013, 240: 598-605.[15] He G, Ji X L, L Nazar L. High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci., 2011, 4(8): 2878-2883.[16] Wu F, Chen J Z, Chen R J, et al. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C, 2011, 115(13): 6057-6063.[17] Seh Z W, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun., 2013, 4: 1331-1336.[18] Ding B, Shen L F, Xu J Y, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium– sulfur battery. Electrochim. Acta, 2013, 107: 78-84.[19] Lai C, Li G C, Ye S H, et al. Research process in sulfur-carbon composites as cathode with high capacity. Progress in Chemistry, 2011, 23(2/3): 527-532.[20] Patel M U M, Demir-Cakan R, Morcrette M, et al. Li-S battery analyzed by UV/Vis in operando mode. Chem. Sus. Chem., 2013, 6(7): 1177-1181.[21] Zhang S S. Does the sulfur cathode require good mixing for a liquid electrolyte lithium/sulfur cell- Electrochem. Commun., 2013, 31: 10–12.[22] Fu Y Z, Su Y S, Manthiram A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem. Int. Ed., 13, 52(27): 6930-6935.[23] Yang Y, Zheng G Y Cui Y, A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ. Sci., 2013, 6(5): 1552-1558.[24] Yang Y, McDowell M T, Jackson A, et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett., 2010, 10(4): 1486-1491.[25] He M, Yuan L X, Zhang W X, et al. Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J. Phys. Chem. C, 2011, 115(31): 15703–15709.[26] Wang J L, Yao Z D, Monroe C W, et al. Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater.,2013, 23(9): 1194-1201.[27] Ai-X P, Cao-Y L, Yang-H X. Simple analysis and possible solutions of the unusual interfacial reactions in Li-S batteries. J. Electrochem., 2012, 18(3): 224-228.[28] Lai C, Gao X P, Zhang B, et al. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J. Phys. Chem. C, 2009, 113(11): 4712-4716.[29] Barchasz C, Lepretre J, Patoux S, et al. Revisiting TEGDME/ DIOX binary electrolytes for lithium/sulfur batteries: Importance of solvation ability and additives. J. Electrochem. Soc., 2013, 160(3): A430-A436.[30] Shin E S, Kim K, Oh S H, et al. Polysulfide dissolution control: the common ion effect. Chem. Commun., 2013, 49(20): 2004-2006.[31] Suo L M, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun., 2013, 4: 1481-1489.[32] Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc., 2009, 156(8): A694-A702.[33] Liang X, Wen Z Y, Liu Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources, 2011, 196(22): 9839-9843.[34] Xiong S Z, Xie K, Diao Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta, 2012, 83: 78-86.[35] Zhang S S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta, 2012, 70: 344-348.[36] Zheng J M, Gu M, Chen H H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. J. Mater. Chem. A, 2013, 1(29): 8464-8470.[37] Song J H, Yeon J T, Jang J Y, et al. Effect of fluoroethylene carbonate on electrochemical performances of lithium electrodes and lithium-sulfur batteries. J. Electrochem. Soc., 2013, 160(6): A873-A881.[38] Xiong S Z, Xie K, Diao Y, et al. On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries. J. Power Sources, 2013, 236: 181-187.[39] Lee Y M, Choi N S, Park J H, et al. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J. Power Sources, 2003, 119-121: 964-972.[40] Zheng M S, Chen J J, Dong Q F. The enhanced electrochemical performance of lithium/sulfur battery with protected lithium anode. Adv. Mater. Res., 2012, 476-478: 676-680.[41] Wu M F, Wen Z Y, Liu Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources, 2011, 196(19): 8091–8097.[42] Yu Z B, Wang W K, Wang A B, et al. Study on the performance of soft-package Li/S battery. Battery Bimonthly, 2007, 37(4): 247-249.[43] Wang L, He X M, Li J J, et al. Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries. Electrochim. Acta, 2012, 72: 114-119.[44] Xia L, Li S L, Ai X P, et al. Safety enhancing methods for Li-ion batteries. Progress in Chemistry, 2011, 23(2/3): 328-335. |