[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(15): 359-367.
[2] Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ion., 2009, 180(14/15/16): 911-916.
[3] XU Xiao-Xiong, WEN Zhao-Yin. Glass and glass-ceramics solid electrolytes for Lithium-ion battery. Journal of Inorganic Materials, 2005, 20(1): 21-26.
[4] 郑洪河, 曲群婷, 刘云伟, 等(ZHENG Hong-He, et al). 无机固体电解质用于锂及锂离子电池研究进展.电源技术(Chinese Journal of Power Sources), 2007 , 131(5): 1015-1020.
[5] 吴 锋, 杨汉西. 绿色二次电池: 新体系与研究方法. 北京: 科学出版社, 2009: 80-81.
[6] 吴宇平, 万春荣, 姜长印. 锂离子二次电池. 北京: 化学工业出版社, 2002: 214-215.
[7] Rodrigues A C M, Keding R, Russel C. Mixed former effect between TeO2 and SiO2 in the Li2O-TeO2-SiO2 system. J. Non-Cryst. Solids, 2000, 273(1/2/3): 53-58.
[8] Kim C E, Hwang H C, Yoon M Y, et al. Fabrication of a high lithium ion conducting lithium borosilicate glass. J. Non-Cryst. Solids, 2011, 357(15): 2863-2867.
[9] Lee C H, Joo K H, Kim J H, et al. Characterizations of a new lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte. Solid State Ion., 2002, 149(1/2): 59-65.
[10] Lee Y I, Lee J H, Hong S H, et al. Li-ion conductivity in Li2O-B2O3-V2O5 glass system. Solid State Ion., 2004, 175(1-4): 687-690.
[11] Pradel A, Rau C, Bittencourt D, et al. Mixed glass former effect in the system 0.3Li2S-0.7[(1-x) SiS2-xGeS2]: a structural explanation. Chem. Mater., 1998, 10(8): 2162-2166.
[12] Tatsumisago M, Mizuno F, Hayashi A. All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes. J. Power Sources, 2006, 159(1): 193-199.
[13] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat. Mater., 2011, 10(9): 682-686.
[14] Yamashita M, Yamanaka H. Formation and ionic conductivity of Li2S-GeS2-Ga2S3 glasses and thin films. Solid State Ion., 2003, 158(1/2): 151-156.
[15] Minami K, Hayashi A, Tatsumisago M. Preparation and characterization of lithium ion conducting Li2S-P2S5-GeS2 glasses and glass-ceramics.-J.---------------Non-Cryst.--Solids,--2010,---356(44-49): 2666- 2669.
[16] Liu Z Q, Huang F Q, Yang J H, et al. Preparation of new lithium ion composite electrolyte 3Li4SiS4-0.5La2S3 by mechanical milling. Solid State Sci., 2008, 10(10): 1429-1433.
[17] Tan G Q, Wu F, Chen R J, et al. Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C, 2012, 116(5): 3817-3826.
[18] Wu F, Liu Y D, Chen R J, et al. Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries. J. Power Sources, 2009, 189(1): 467–470.
[19] Cho K I, Lee S H, Cho K H, et al. Li2O-B2O3-P2O5 solid electrolyte for thin film batteries. J. Power Sources, 2006, 163(1): 223-228.
[20] Cho K I, Lee S H, Shin D W, et al. Relationship between glass network structure and conductivity of Li2O-B2O3-P2O5 solid electrolyte. Electrochim. Acta, 2006, 52(4): 1576-1581.
[21] Faizal A F A, Majid S R, Subban R H Y. Conductivity studies of Li2O-TiO2-P2O5 system. Mater. Res. Innov., 2009, 13(3): 229-231.
[22] Okada T, Honma T, Komatsu T. Synthesis and Li+ ion conductivity of Li2O-Nb2O5-P2O5 glasses and glass–ceramics. Mater. Res. Bull., 2010, 45(10): 1443-1448.
[23] Mascaraque N, Durán A, Mu-oz F. Effect of alumina on the structure and properties of Li2O–B2O3–P2O5 glasses. J. Non-Cryst. Solids, 2011, 357(16/17): 3212-3220.
[24] Lee S H, Cho K I, Choi J B, et al. Phase separation and electrical conductivity of lithium borosilicate glasses for potential thin film solid electrolytes. J. Power Sources, 2006, 162(2): 1341-1345.
[25] Morimoto S. Phase separation and crystallization in the system SiO2-Al2O3-P2O5-B2O3-Na2O glasses. J. Non-Cryst. Solids, 2006, 352(8): 756-760.
[26] 吴 锋, 刘亚栋, 陈人杰, 等(WU Feng, et al). LiBPON薄膜电解质的制备及电化学性能研究. 电化学(Electrochemistry), 2009, 15(1): 17-21.
[27] Raskar D, Rinke M T, Eckert H. The mixed network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1-x(B2O3)x. J. Phys. Chem. C, 2008, 112(32): 12530-12539.
[28] Jin Y, Chen X, Huang X. Raman studies of lithium borophosphate glasses. J. Non-Cryst. Solids, 1989, 112(1/2/3): 147-150.
[29] Doweida H, El-Shahawi M S, Reicha F M, et al. Phase separation and physical properties of sodium borosilicate glasses with intermediate silica content. J. Phys. D: Appl. Phys., 1990, 23(11): 1441-1446.
[30] Maia L F, Rodrigues A C M. Electrical conductivity and relaxation frequency of lithium borosilicate glasses. Solid State Ion., 2004, 168(1/2): 87-92.
[31] El-Egili K. Infrared studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 glasses. Phys. B, 2003, 325: 340-348.
[32] Kluva-nek P, Klement R, Karacon M. Investigation of the conductivity of the lithium borosilicate glass system. J. Non-Cryst. Solids, 2007, 353(18-21): 2004-2007.
[33] Lee C H, Sohn H J, Kim M G. XAS study on lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte. Solid State Ion., 2005, 176(13/14): 1237-1241.
[34] Sharma M V N V D, Sarma A V, Rao R B. Electrical conductivity, relaxation, and scaling analysis studies of lithium alumino phosphate glasses and glass ceramics. J. Mater. Sci., 2009, 44(22): 5557-5562.
[35] Reddy C V K, Rao R B, Mouli K C, et al. Electrical conductivity, electrical modulus, and scaling studies of Li2O-Ga2O3-P2O5 glass electrolyte doped with selenium. Ions. Ion., 2012, 18(1/2): 65-73.
[36] Gedam R S, Deshpande V K. An anomalous enhancement in the electrical conductivity of Li2O: B2O3: Al2O3 glasses. Solid State Ion., 2006, 177(26-32): 2589-2592.
[37] Gedam R S, Deshpande V K. Enhancement in electrical conductivity of Li2O:B2O3:V2O5 glasses. Bull. Mater. Sci., 2009, 32(1): 83-87.
[38] Christensen R, Byer J, Olson G, et al. The glass transition temperature of mixed glass former 0.35Na2O+0.65[xB2O3+ (1-x)P2O5] glasses. J. Non-Cryst. Solids, 2012, 358(4): 826-831.
[39] Christensen R, Byer J, Olson G, et al. The densities of mixed glass former 0.35Na2O+0.65[xB2O3+ (1-x)P2O5] glasses related to the atomic fractions and volumes of short range structures. J. Non-Cryst. Solids, 2012, 358(4): 583-589.
[40] Seino Y, Takada K, Kim B C, et al. Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode. Solid State Ion., 2005, 176(31-34): 2389-2393.
[41] Yamamoto H, Machida N, Shigematsu T. A mixed-former effect on lithium-ion conductivities of the Li2S-GeS2-P2S5 amorphous materials prepared by a high-energy ball-milling process. Solid State Ion., 2004, 175(1-4): 707-711.
[42] Kanno R, Murayama M. Lithium ionic conductor thio-LISICON the Li2S-GeS2-P2S5 system. J. Electrochem. Soc., 2001, 148(7): A742-A746.
[43] Matsumura T, Nakano K, Kanno R, et al. Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries. J. Power Sources, 2007, 174(2): 632-636.
[44] Kobayashi T, Yamada A, Kanno R. Interfacial reactions at electrode/ electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim. Acta, 2008, 53(15): 5045-5050.
[45] Trevey J E, Jung Y S, Lee S H. High lithium ion conducting Li2S-GeS2-P2S5 glass-ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries. Electrochim. Acta, 2011, 56(11): 4243-4247.
[46] Trevey J E, Jung Y S, Lee S H. Preparation of Li2S-GeS2-P2S5 electrolytes by a single step ball milling for all-solid-state lLithium secondary batteries. J. Power Sources, 2010, 195(15): 4984-4989.
[47] El-All S A, Ezz-Eldin F M. Electrical conductivity of gamma-irradiated V2O5 doped lithium disilicate glasses doped and their glass-ceramics derivatives. Nucl. Instrum. Meth. Phys. Res. B, 2010, 268(1): 49-56.
[48] Mekki A, Khattak G D, Holland D, et al. Structure and magnetic properties of vanadium-sodium silicate glasses. J. Non-Cryst. Solids, 2003, 318(1/2): 193-201.
[49] Garbarczyk J E, Wasiucionek M, Józwiak P, et al. Studies of Li2O-V2O5-P2O5 glasses by DSC, EPR and impedance spectroscopy. Solid State Ion., 2002, 154-155: 367-373.
[50] Garbarczyk J E, Jozwiak P, Wasiucionek M, et al. Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallization. Solid State Ion., 2004, 175(1-4): 691-694. |