[1] Coe S, Woo W K, Bawendi M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803.
[2] Leventis H C, King S P, Sudlow A, et al. Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett., 2010, 10(4): 1253–1258.
[3] Yoffe A D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys., 2001, 50(1): 1–208.
[4] Li F S, Cho S H, Son D I, et al. UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures. Appl. Phys. Lett., 2009, 94(11): 111906–1–3.
[5] Li Y Q, Rizzo A, Mazzeo M, et al. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. J. Appl. Phys., 2005, 97(11): 113501–1–4.
[6] Anikeeva P O, Halpert J E, Bawendi M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett., 2009, 9(7): 2532–2536.
[7] Li F S, Guo T L, Kim T. Charge trapping in hybrid electroluminescence device containing CdSe/ZnS quantum dots embedded in a conducting poly(N-vinylcarbozole) layer. Appl. Phys. Lett., 2010, 97(6): 062104–1–3.
[8] Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photonics, 2008, 2(4): 247–250.
[9] Arians R, Kummell T, Bacher G, et al. Room temperature emission from CdSe/ZnSSe/MgS single quantum dots. Appl. Phys. Lett., 2007, 90(10): 101114–1–3.
[10] Cheng G, Mazzeo M, Rizzo A, et al. White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Appl. Phys. Lett., 2009, 94(24): 243506–1–3.
[11] Wang X B, Li W W, Sun K. Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine- free route for white light-emitting-diodes with high color rendering properties. J. Mater. Chem., 2011, 21(24): 8558–8565.
[12] Du L X, Hu L, Zhang B P, et al. Photoluminescence enhancement of colloidal quantum dots embedded in a microcavity. Acta Phys. Sin., 2011, 60(11): 117803–1–5.
[13] Hu L, Wu H Z, Du L X, et al. The effect of annealing and photoactivation on the optical transitions of band–band and surface trap states of colloidal quantum dots in PMMA. Nanotech., 2011, 22(12): 125202–1–6.
[14] Wu D G, Kordesch M E, Van Patten P G. A new class of capping ligands for CdSe nanocrystal synthesis. Chem. Mater., 2005, 17(25): 6436–6441.
[15] Benamar E, Rami M, Messaoudi C, et al. Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis. Solar Energy Materials & Solar Cells, 1999, 56(2): 125–139.
[16] Luan W L, Yang H W, Tu S T, et al. Open-to-air synthesis of monodisperse CdSe nanocrystals via microfluidic reaction and its kinetics. Nanotech., 2007, 18(17): 175603–1–6.
[17] Qadri S B, Skelton E F, Hsu D, et al. Size-induced transition-temperature reduction in nanoparticles of ZnS. Physical Review B, 1999, 60(13): 9191–9193.
[18] Tang A W, Teng F, Gao Y H, et al. White light emission from organic-inorganic hererostructure devices by using CdSe quantum dots as emitting layer. J. Lumin., 2007, 122: 649–651.
[19] Kobayashi S, Tani Y, Kawazoe H. Quantum dot activated all-inorganic electroluminescent device fabricated using solution-synthesized CdSe/ZnS nanocrystals. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007, 46(36-40): L966–L969. |