无机材料学报 ›› 2021, Vol. 36 ›› Issue (11): 1217-1222.DOI: 10.15541/jim20200744 CSTR: 32189.14.10.15541/jim20200744
所属专题: 【虚拟专辑】钙钛矿材料(2020~2021)
收稿日期:2020-12-30
									
				
											修回日期:2021-04-01
									
				
									
				
											出版日期:2021-11-20
									
				
											网络出版日期:2021-05-10
									
			通讯作者:
					张志洁, 副教授. E-mail: zjzhang@sit.edu.cn;徐家跃, 教授. E-mail: xujiayue@sit.edu.cn
							作者简介:舒孟洋(1996-), 男, 硕士研究生. E-mail: 277550283@qq.com
				
							
        
               		SHU Mengyang( ), LU Jialin, ZHANG Zhijie(
), LU Jialin, ZHANG Zhijie( ), SHEN Tao, XU Jiayue(
), SHEN Tao, XU Jiayue( )
)
			  
			
			
			
                
        
    
Received:2020-12-30
									
				
											Revised:2021-04-01
									
				
									
				
											Published:2021-11-20
									
				
											Online:2021-05-10
									
			Contact:
					ZHANG Zhijie, associate professor. E-mail: zjzhang@sit.edu.cn;XU Jiayue, professor. E-mail: xujiayue@sit.edu.cn   
							About author:SHU Mengyang(1996-), male, Master candidate. E-mail: 277550283@qq.com				
							Supported by:摘要:
金属卤化物钙钛矿量子点(QDs)具有良好的光电性质, 是一种潜在的光催化剂材料。但是, 它的稳定性较差, 并且电荷传输效率不足, 阻碍了其在光催化领域的应用。本工作将CsPbBr3量子点装饰在二维超薄g-C3N4纳米片(UCN)上, 制备了0D/2D CsPbBr3/UCN复合光催化剂。引入UCN不仅可以通过钝化CsPbBr3 量子点的表面配体来提高CsPbBr3量子点的稳定性, 而且两者的能带匹配还可以促进两种材料之间的电荷转移。 因此, 所制备的CsPbBr3/UCN异质结构比单纯的CsPbBr3量子点和UCN具有更优越的光催化性能, 这为设计具有高稳定性和光催化活性的基于CsPbX3的异质结构提供了有效的策略。
中图分类号:
舒孟洋, 陆嘉琳, 张志洁, 沈涛, 徐家跃. CsPbBr3钙钛矿量子点/C3N4超薄纳米片0D/2D复合材料: 增强的稳定性和光催化活性[J]. 无机材料学报, 2021, 36(11): 1217-1222.
SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity[J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222.
 
																													Fig. 4 (A) Photocatalytic degradation of RhB over CsPbBr3, BCN, UCN and CsPbBr3/UCN composite; (B) XRD patterns of recycled CsPbBr3 and CsPbBr3/UCN composite
| [1] | LI H T, HE X D, LIU Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49(2):605-609. DOI URL | 
| [2] | GAO Y, ZHAO L, SHANG Q, et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Advanced Materials, 2018, 30(31):1801805. DOI URL | 
| [3] | LI J, XU L, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5):1603885. DOI URL | 
| [4] | WANG H R, ZHANG X Y, WU Q Q, et al. Trifluoroacetate induced small-grained trifluoroacetate induced small-grained stable light-emitting devices. Nature Communications, 2019, 10(1):665. DOI URL | 
| [5] | DING J, DU S, ZUO Z, et al. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. Journal of Physical Chemistry C, 2017, 121(9):4917-4923. DOI URL | 
| [6] | BEGUM R, PARIDA M R, ABDELHADY A L, et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. Journal of the American Chemical Society, 2017, 139(2):731-737. DOI URL | 
| [7] | LAO X Z, YANG Z, SU Z C, et al. Luminescence and thermal behaviors of free and trapped excitons in cesium lead halide perovskite nanosheets. Nanoscale, 2018, 10(21):9949-9956. DOI URL | 
| [8] | LEE Y H, LUO J, BAKER R H, et al. Unraveling the reasons for efficiency loss in perovskite solar cells. Advanced Functional Materials, 2015, 25(25):3925-3933. DOI URL | 
| [9] | TAN Y S, LI R Y, XU H, et al. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Advanced Functional Materials, 2019, 29(23):1900730. DOI URL | 
| [10] | XU Y F, YANG M Z, CHEN B X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society, 2017, 139(16):5660-5663. DOI URL | 
| [11] | WU Y Q, WANG P, ZHU X L, et al. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Advanced Materials, 2018, 30(7):1704342. DOI URL | 
| [12] | FENG J, PENG L L, WU C Z, et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Advanced Materials, 2012, 24(15):1969-1974. DOI URL | 
| [13] | LOH K P, BAO Q L, EDA G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2(12):1015-1024. DOI URL | 
| [14] | ZHANG X D, XIE X, WANG H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1):18-21. DOI URL | 
| [15] | OU M, TU W G, YIN S G, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 130(41):13758-13762. | 
| [16] | WANG X C, BLECHERT S, ANTONIETTI M, et al. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catalysis, 2012, 2(8):1596-1606. DOI URL | 
| [17] | CAO S W, YU J G. g-C3N4 based photocatalysts for hydrogen production. Journal of Physical Chemistry Letters, 2014, 5(12):2101-2107. DOI URL | 
| [18] | LIU Q, CHEN T X, GUO Y R, et al. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2016, 193(15):248-258. DOI URL | 
| [19] | ZHU M S, KIN S, MAO L, et al. Metal-free hotocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/ graphitic carbon nitride. Journal of the American Chemical Society, 2017, 139(37):13234-13242. DOI URL | 
| [20] | ZHAO Y Y, LIANG X H, WANG Y B, et al. Degradation and removal of ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. Journal of Colloid and Interface Science, 2018, 523(1):7-17. DOI URL | 
| [21] | HUANG H R, ZHANG Z Z, GUO S K, et al. Interfacial charge- transfer transitions enhanced photocatalytic activity of TCNAQ/g-C3N4 organic hybrid material. Materials Letters, 2019, 255(15):126546. DOI URL | 
| [22] | ZHAO Y Y, SHI H X, HU X Y, et al. Fabricating CsPbX3/CN heterostructures with enhanced photocatalytic activity for penicillins 6-APA degradation. Chemical Engineering Journal, 2020, 381(1):122692. DOI URL | 
| [23] | YOU S Q, GUO S H, ZHAO X, et al. All-inorganic perovskite/ graphitic carbon nitride composite for CO2 photoreduction into C1 compounds under low concentrations of CO2. Dalton Transactions, 2019, 48(37):14115-14121. DOI URL | 
| [24] | PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6):3692-3696. DOI URL | 
| [25] | ZOU Y, YANG B, LIU Y, et al. Controllable interface-induced co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Advanced Functional Materials, 2018, 28(50):1806214. DOI URL | 
| [26] | LIANG Z Q, ZHAO S L, XU Z, et al. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Applied Materials Interfaces, 2016, 8(42):28824-28830. DOI URL | 
| [27] | PARK S, CHANG W J, LEE C W, et al. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2016, 2(1):16185. DOI URL | 
| [1] | 陈莉波, 盛盈, 伍明, 宋季岭, 蹇建, 宋二红. Na和O元素共掺杂氮化碳高效光催化制氢[J]. 无机材料学报, 2025, 40(5): 552-562. | 
| [2] | 范小暄, 郑永炅, 徐丽荣, 姚子敏, 曹硕, 王可心, 王绩伟. 基于富氧空位LiYScGeO4: Bi3+长余辉光催化剂的自激活余辉驱动有机污染物芬顿降解[J]. 无机材料学报, 2025, 40(5): 481-488. | 
| [3] | 贾相华, 张辉霞, 刘艳凤, 左桂鸿. 湿化学法制备Cu2O/Cu空心球异质结光催化剂[J]. 无机材料学报, 2025, 40(4): 397-404. | 
| [4] | 吕昕怿, 相恒阳, 曾海波. 长程有序助力钙钛矿QLED高性能化[J]. 无机材料学报, 2025, 40(1): 111-112. | 
| [5] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. | 
| [6] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. | 
| [7] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. | 
| [8] | 王兆阳, 秦鹏, 蒋胤, 冯小波, 杨培志, 黄富强. 三明治结构钌插层二氧化钛光催化四环素降解性能研究[J]. 无机材料学报, 2024, 39(4): 383-389. | 
| [9] | 岳仔豪, 杨小兔, 张正亮, 邓瑞翔, 张涛, 宋力昕. Pb2+对掺杂硼硅酸盐玻璃中CsPbBr3钙钛矿量子点发光性能的影响[J]. 无机材料学报, 2024, 39(4): 449-456. | 
| [10] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. | 
| [11] | 李秋实, 殷广明, 吕伟超, 王怀尧, 李婧琳, 杨红光, 关芳芳. Na+/g-C3N4材料的制备及光催化降解亚甲基蓝机理[J]. 无机材料学报, 2024, 39(10): 1143-1150. | 
| [12] | 樊家顺, 夏冬林, 刘保顺. 温度相关的CsPbBr3纳米晶瞬态光电导响应研究[J]. 无机材料学报, 2023, 38(8): 893-900. | 
| [13] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. | 
| [14] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. | 
| [15] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||